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ADVANTAGES  OF FILTER APPROACH

● “EXPERT” INVERSE ASPECTS SEPARATED 
FROM THE APPLICATIONS ASPECTS

● RELATIVELY SIMPLE IMPLEMENTATION IN 

MANUFACTURING SETTING - CONTINUOUS

● GOOD FOR REPETITIVE USES

● POTENTIAL FOR INSTRUMENTS

● INTRINSIC VERIFICATION ASPECTS
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LITERATURE REVIEW

1981 DIEGO MURIO PUBLISHED PAPERS GIVING 4 KINDS OF 
INVERSE KERNELS

1985 BECK, BLACKWELL & ST. CLAIR BOOK ON IHCP

NEITHER GAVE REAL-TIME POTENTIAL OR APPLICATION TO 
MILDLY VARYING THERMAL PROPERTIES

2005 BECK DISCUSSED FILTER METHOD FOR QUENCHING 
OF SPHERES. T-DEPENDENT THERMAL PROPERTIES. 
SINGLE TEMPERATURE MEASUREMENT AT CENTER 
POINT (WHICH IS “INSULATED”)

NOW EXTEND TO T HISTORY GIVEN AT “KNOWN” SURFACE  
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OUTLINE

● WHAT IS THE INVERSE HEAT CONDUCTION 
PROBLEM (IHCP)?

PROBLEM WITH GIVEN T(t) AT x = L

● SENSITIVITY COEFFICIENTS

● INVERSE SOLUTION USING WHOLE DOMAIN

TIKHONOV REGULARIZATION, HAT FUNCTIONS

● FILTER CONCEPTS WITH GIVEN T(t) AT x = L

● EXAMPLE

●CONCLUSIONS
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WHAT IS THE INVERSE HEAT CONDUCTION PROB.?
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TEMPERATURE AT x1 SUM OF q AT x = 0 AND

TEMPERATURE HISTORY AT x = L. 

CAN BE DESCRIBED BY GREEN’S FUNCTIONS, 

21

1 21 1 1

0 0

( , ) ( ) ( ,0, ) ( ) ( , , )
'τ τ
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τ τ τ α τ τ τ

= =

∂ 
= − + − − 

∂ 
∫ ∫
t t

X
X

G
T x t q G x t d y x L t d

k x

T(x1,t) = “MEASURED” TEMP., ALSO DENOTED Y(t)
q(t)     = UNKNOWN HEAT FLUX TO BE ESTIMATED
G(.)    = GREEN’S FUNCTION
y(t)     = GIVEN TEMPERATURE HISTORY AT x = L

WE APROXIMATE USING “HAT” FUNCTIONS.
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HAT BASIS FUNCTION FOR q(t) OR y(t)

• •
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8

FOR LINEARLY INCREASING q AT x = 0,
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INTRINSIC VERIFICATION POTENTIAL FOR αi∆t/L < 0.003
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HAT FUNCTIONS (CONTINUED) 

LINEARLY INCREASING q BOUNDARY CONDITION:
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HAT FUNCTIONS (CONTINUED)

LET:
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MATRIX FORM OF TEMP., LINEAR ANALYSIS

WHERE THE INITIAL TEMPERATURE = 0  T Xq Zy= += += += +
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SIMILAR MATRICES FOR Z AND y.
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SENSITIVITY COEFFICIENTS, HAT BASIS FUNCTION

FilterMasterX21fgdt02.m12
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X(:,1) for hat q at x = 0 and Z(:,1) for hat T at x = L. x = L/2.

2
/t Lα∆ = 0.02.
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1ST ORDER TIKHONOV REGULARIZATION

SUM OF SQUARES (WHOLE TIME DOMAIN)

= − − +

= − − − − +

(Y T) (Y T) q H HXq

  (Y Xq Zy) (Y Xq Zy) q H Hq

T T T

T

T T T

T

S αααα

αααα

αT IS TIKHONOV REGULARIZATION PARAMETER,
H HAS -1 ON MAIN DIAGONAL AND 1 ON 
DIAGONAL JUST ABOVE.

MINIMIZING SUM OF SQUARES GIVES

1α −= + −q̂ [X X H H] (X Y Z y)T T T T

T

NOTICE: ESTIMATES LINEAR FUNCTIONS OF Y & 
y.  SUGGESTS USE OF FILTER COEFFICIENTS
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FILTER COEFFICIENTS - DERIVATION

TRANSIENT HEAT CONDUCTION USING 
CONVOLUTION INTEGRALS & FUTURE INFO.

(((( ))))
1

ˆ  

ˆ  is heat flux at time 

 and  are filter coefficients

 is for the past time steps

 is for the future time steps

p f

f f

m m

M j m M j j m M j

j

M M

j i

p

f

q f Y g y

q t

f g

m

m

++++

+ − + −+ − + −+ − + −+ − + −
====

= += += += +∑∑∑∑

THE EQUATION IS THE BASIC ONE FOR FILTER ALGORITHM.
FOR GIVEN PROBLEM, fJ AND gJ FOUND ONCE FOR ALL
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HOW ARE fj AND gj FOUND?

1 1

1 1 2 2 1 1
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� �

p f p f

f f

f f p f p f p f p

m m m m

M j m M j j m M j

j j

m M m M m m M m m M m m M m

q f Y g y
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+ − + −+ − + −+ − + −+ − + −
= == == == =

+ − + − + − + − + −+ − + − + − + − + −+ − + − + − + − + −+ − + − + − + − + −

= += += += +

= + + + + + += + + + + + += + + + + + += + + + + + +

∑ ∑∑ ∑∑ ∑∑ ∑

0 for all   except 1
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Y y j Y= = == = == = == = =

2 2 2 2 2 2
ˆ ˆ0 1 ,   

fm
q f Y f f f q= + = ⋅ = == + = ⋅ = == + = ⋅ = == + = ⋅ = =

LET

USE LINEAR IHCP ALGORITHM (Funct. Spec., 
TIKHONOV  REG.,..) TO GET ALL qi ESTIMATES

SET M = 1: 1 1 1 1 1 1
ˆ ˆ0 1 ,   

fm
q f Y f f f q= + = ⋅ = == + = ⋅ = == + = ⋅ = == + = ⋅ = =

SET M = 2:

SET j = M :
1
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p f

f f

m m

M j m M j M m M M M

j

q f Y f Y f f q

++++

+ −+ −+ −+ −
====
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1

ˆ ˆ,     
p f

f f

m m

M j m M j M m M M M

j

q g y g y g g q

++++

+ −+ −+ −+ −
====

= = = == = = == = = == = = =∑∑∑∑

FILTER COEFFICIENTS (CONTINUED)

0 for all   except 1
fj j m

Y y j y= = == = == = == = =

2 2 2 2 2 2
ˆ ˆ0 1 ,   

fm
q g y g g g q= + = ⋅ = == + = ⋅ = == + = ⋅ = == + = ⋅ = =

LET

SET M = 1: 1 1 1 1 1 1
ˆ ˆ0 1 ,   

fm
q g y g g g q= + = ⋅ = == + = ⋅ = == + = ⋅ = == + = ⋅ = =

SET M = 2:

SET j = M :

UNITS: T=Xq+Zy

T in K or C, y in same units, K or C. q in W/m2,
X in K/(W/m2), Z is dimensionless.
f and g have same units of W/m2-K.
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EXAMPLE: PLATE 0<x<L ,  T(L,t) = y(t), 
T(L/2,t) = Y(t)

DIMENSIONLESS CASE: L = 1 m, k = 1 W/m-K, 

α = 1 m2/s

WE CONSIDER A HEAT FLUX FORMED BY A 
SERIES OF HAT (TRIANGLES) FUNCTIONS, 
EACH αt/L2 = 2 LONG.

CALCULATE THE TEMPERATURE HISTORY USING 
EXACT SOLUTION FOR LENGTH = 2L.

SIMULATED TIME STEPS, α∆t/L2 = 0.02 
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HEAT FLUX HISTORY FOR EXAMPLE
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TEMPERATURE HISTORIES IN PLATE

FilterMasterX21a .m iplot = 0
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TIKHONOV IHCP FILTER COEFS., αT = 0.0001

FilterMast

erX21fg
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SUM(f)= 1.9997, SUM(g) = -1.9999, x1 = L/2 = ½. 
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TIKHONOV IHCP FILTER COEFS., αT = 0.01

SUM(f )= 2.0024, SUM(g) = -1.9999, x1 = L/2 = ½. 

FilterMasterX21fg01.m 
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INTRINSIC VERIFICATION USING SUMS

(((( ))))
1 j=1 j=1
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SS j SS j

Y y
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L x
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L x L x

+ ++ ++ ++ +
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−−−−
= += += += +

−−−−
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∑ ∑∑ ∑∑ ∑∑ ∑

∑ ∑∑ ∑∑ ∑∑ ∑

CAN THE SUM OF THE f AND g TERMS BE ANALYTICALLY
DETERMINED?

ihcpTikzeroRS02linTungaa
a

STEADY-STATE PROBLEMS SOLVED WITH FILTER EQUATION. 

FOR STEADY-STATE, Yj = YSS, yj = ySS

ALSO STEADY- STATE HEAT CONDUCTION EQ. GIVES
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INTRINSIC VERIFICATION (CONTINUED)

j=1 j=1

,   
p f p fm m m m

j j

k k
f g

L x L x

+ ++ ++ ++ +

= = −= = −= = −= = −
− −− −− −− −

∑ ∑∑ ∑∑ ∑∑ ∑

j=1 j=1

2,   2
p f p fm m m m

j j
f g

+ ++ ++ ++ +

= = −= = −= = −= = −∑ ∑∑ ∑∑ ∑∑ ∑

SINCE YSS & yss ARE INDEPENDENT,

NOW k = 1, L = 1, x = ½, THEN

NUMERICALLY EVALUATING THESE SUMS SHOULD GIVE 
ABOUT THE SAME VALUES.
FOR        = 0.0001, SUM(f) = 1.9997 AND SUM(g) = -1.9999.
HENCE, WE HAVE SHOWN INTRINSIC VERIFICATION.

Tα
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COMPARISON OF WHOLE-DOMAIN & FILTER ANAL.

ERRORLESS DATA, αT = 0.0001, 
STD TIK = 0.0856, STD FILTER = 0.0859
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COMPARISON CONTINUED. DATA WITH ERRORS

FilterMasterX21ab.m

ERRORS WITH STD. STATISTICAL ASSUMPTIONS, 
σ = 0.5, αT = 0.01, STD TIK = STD FILTER = 2.2814
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OBSERVATIONS

THE NUMERICAL VALUES ARE ALMOST IDENTICAL FOR THE 
WHOLE-DOMAIN ANALYSIS AND THE FILTER ANALYSIS.

COMPUTATIONALLY THE FILTER ANALYSIS IS MUCH MORE 
EFFICIENT.

APPLYING THE FILTER METHOD WITH KNOWN FILTER 
COEFFICIENTS IS MUCH EASIER THAN THE WHOLE-
DOMAIN METHOD. MANY FEWER DECISIONS.

CAN MAKE AN INSTRUMENT TO DO THE FILTERING 
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CONCLUSIONS

METHOD FOR TREATING T BOUNDARY CONDITION

INITIAL CONDITION NOT NEEDED

WELL-SUITED FOR REPETITIVE TESTS OR
CONTINUOUS USE

MAIN SKILL LEVEL NEEDED IN THE INVERSE 
ALGORITHM. LESS SKILL FOR FILTER SOL. 

INTRINSIC VERIFICATION POSSIBLE


