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ABSTRACT
  
As part of a broader study of the mechanical properties 
of polymers, a sensitivity study is carried out on the 
dynamic models used for instrumented nanoindentation 
which are used in the interpretation of the experimental 
data.  Properties of PDMS (a rubbery polymer) are 
found from experimental nanoindentation data in a 
point-by-point procedure at each frequency, and by 
whole-domain estimation over multiple frequencies.  
The estimation results are less affected by noise in the 
data, but somewhat dependent on the chosen frequency 
range.   

1. NOMENCLATURE 
 
A  = indenter contact area 
b  = parameters 

ic   = instrument damping, Ns/m 

sc   = instrument damping, Ns/m 
E’  = reduced storage modulus 
E’’  = reduced loss modulus 
f  = frequency, Hz 

0F   = oscillating force, N 

ik   = instrument stiffness, N/m 

sk   = sample stiffness, N/m 
m  = mass 
S  = sum of square error 
x  = time history of displacement 
X  = displacement amplitude 
Y  = experimental data 
Ŷ   = model estimate 
Greek 
ϕ   = phase of displacement 
ω   = frequency, rad/s  
χ   = sensitivity coefficient 
 

2. INTRODUCTION 
 
Because of an emphasis on lighter weight and 
multifunctional materials, polymers and polymer 

composites (traditional and nanocomposites) play 
critical roles in many current and future Army 
applications including blast and impact mitigation (i.e., 
armor).  New polymers and polymer composites, 
produced in the laboratory in small sample sizes, can 
be produced much faster than they can be 
quantitatively characterized.  Recent advancements in 
instrumented nanoindentation have resulted in 
capabilities for characterizing mechanical behavior in 
small-sized samples from quasi-static rates to 
ultrasonic frequencies.  Current capabilities for 
deriving quantitative mechanical properties of 
polymers from nanoindentation tests are severely 
limited, because (a) the current dynamic models used 
to describe the tip-sample interactions only crudely 
approximate viscoelastic behavior, and (b) current 
data-analysis practice involves computing parameters 
at one frequency at a time. 
 This work reported in this paper is a first step 
towards better utilization of the data from instrumented 
nanoindentation measurements on polymers.  This 
paper is divided into several sections.  First a brief 
description is given of the nanoindentation unit and the 
experimental procedures used to obtain data from a 
PDMS sample.  Then the model used to analyze data is 
presented, along with the relations used to determine 
the loss and storage modulus.  Experimental data froma  
PDMS sample is analyzed with the pointwise 
procedure, one frequency at a time.  Next a sensitivity 
study of the model is given, followed by new results 
found from a parameter estimation technique applied 
over a range of frequencies.  The paper concludes with 
a discussion of future work.   
 

3. EQUIPMENT AND PROCEDURES 
 
A schematic of the experimental apparatus for nano-
indentation is shown in Figure 1. The nanoindentation 
instrument makes use of a three-place capacitive 
transducer capable of providing motion in the vertical 
direction and can measure both force and displacement 
simultaneously.  Force is applied through electrostatic 



actuation while displacement is measured by the 
change in capacitance.  An indenter tip is screwed in 
place in the transducer.  The tip used must have a 
calibrated area function in order to accurately interpret 
the measured results. The transducer is mounted on an 
AFM stand with the sample placed on the piezoelectric 
scanner. 
 Before the instrument can be used for 
measurement, an “air indent” is performed to ensure 
proper calibration of the transducer and to calculate 
values for machine stiffness and machine damping.  A 
load function is then coded into the software that 
controls the instrument.  For the present work, with 
dynamic testing, the load function involved ramping 
the force up to a desired static value and then a small 
sinusoidal oscillating force is superposed at a 
prescribed frequency and amplitude.  The experiments 
conducted for this paper were of variable frequency 
type, which involved prescribing a maximum load to 
be reached, and a sinusoidal oscillation about this load 
at a specific amplitude with the oscillation frequency 
varying through a desired range.  The dynamic testing 
is capable of returning values for elastic modulus, 
storage modulus, loss modulus, phase etc. 
 The experimental data is recorded in a computer 
file, by software provided with the nanoindenter unit, 
in the form of a table of values over a range of 
frequencies.  The recorded information includes input 
values: applied static force; applied oscillatory force; 
and, oscillation frequency.  Recorded output values are 
the displacement amplitude and displacement phase at 
each frequency. 
 
3.  MODEL  
 
In order to extract the properties of the sample from the 
experimental data, a suitable model is needed.  Figure 
2 shows the spring/dashpot model used for interpreting 
dynamic indentation data.  The instrument is 
represented by a spring, dashpot and mass (properties 
ki, ci, and mi ) and the sample is represented by a spring 
and dashpot (properties (ks and cs ).  This model of the 
sample, though elementary, does provide repeatable 
results for trends in the damping present in polymeric 
materials. 
 The dynamic response of the model will be used 
for interpretation of the experimental data.  
Specifically, we seek the sinusoidal displacement of 
the indenter mass when a sinusoidal force is applied.  
The equation of motion for the indenter mass is given 
by 
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The solution for displacement, x, may be formally 
stated 

)sin( ϕω −= tXx   (2) 
 
The dynamic response is measured through X and ϕ, 
the amplitude and phase of the displacement, 
respectively.  The formal analytical solution for the 
equation of motion, in terms of amplitude and 
displacement, is given by  
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The usual approach is algebraic inversion of  the above 
relationships to solve for the sample values at each 
frequency [1].  That is,  
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The sample spring and dashpot constants, ks and cs, 
have been introduced for the purpose of the model.  
The actual parameters of interest for the sample are the 
storage modulus and the loss modulus, which can be  
related to the model values by Hertzian theory for a 
circular punch in contact with a half space [2] 
 

A
c

E
A

k
E ss πωπ

2
'';

2
' ==  (7) 

 
Here A is the contact area and E’ and E’’ are the 
reduced storage and loss coefficients, respectively [3].   
 For most indenters (spherical, Berkovitch, etc.) the 
contact area must be carefully calibrated as  function of 
displacement depth.  For the present work, however, a 
flat circular punch (diameter 500 micrometers) is used 
for which the contact area is independent of 
displacement.  
 
4.  DATA  ANALYSIS 
 
In this section nanoindentation data is analyzed to 
obtain mechanical properties.  Figure 3 shows 
experimental data for displacement (amplitude and 
phase) plotted versus frequency, obtained from a 
Hysitron nanoindentation unit on a sample of PDMS 
polymer.  A flat circular punch was used as  the 
indenter.  Note that the experimental data is quite 
smooth over the range of frequencies studied.   
 If the instrument parameters are known (or found 
from calibration), then the above relations can be used 
to determine the sample properties E’ and E’’.   The 
calibration data associated with the data are given in 



Table 1.  Next, two approaches to analysis of the data 
are discussed. 
 
4.1  Pointwise estimation. 
 In this approach, data at each frequency (X , ϕ ) 
are used to compute  sample properties at each 
frequency.  This is the approach used in the software 
provided by the nanoindenter manufacturer [4].   
 Figure 4 shows the values of storage and loss 
modulus obtained by point-by-point application of Eqs. 
(5-7).   The values for E’ and E’’ vary smoothly with 
frequency in the middle of the frequency range, but 
there is some scatter at low frequencies and more 
scatter in the results at high frequencies.  The scatter in 
the results is non-physical, as we expect gradual and 
smooth variation in the moduli as a function of 
frequency.  The scatter in the results must therefore be 
a results of noise in the raw data, even though the raw 
data does not appear to be “noisy”.   In some way the 
data analysis seems so be amplifying a small amount of 
noise present in the data, and this effect is more 
pronounced at higher frequencies.  
 
4.2  Whole-domain estimation.   
 Another approach to analyzing the data is 
parameter estimation, whereby data from many 
frequencies is considered together in a regression 
scheme to find the best fit between the model and the 
data. For this method, the functional form of the 
frequency variation of the moduli must be chosen.  For 
simplicity we seek a power law of the form 
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where fr  is the instrument resonance frequency and the 
parameters to be sought are bi , i = 1,2, 3. 
 Next, let the displacement data at each frequency 
be denoted )(ωY  (representing both amplitude and 

phase information), and let  represent values 
computed from the model with Eq. (5 – 8) which 
depend upon parameter values b

) , jbY ω(ˆ

j.  The level of fit 
between the data and the model is measured by the 
sum-of-square error, 
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The procedure to determine the best parameters is to 
minimize S by varying parameters bj, and then best-fit 
parameter values represent the best estimates for the 
sample properties.  In this research we use a 
Levenberg-Marquardt technique to minimize the sum-
of-square error [5]. 

 The parameter estimation approach involves the 
use of sensitivity coefficients, which are derivatives of 
the model values with respect to the parameters.  The 
sensitivity coefficients are defined by  
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Each derivative is multiplied by the parameter so that 
the units of jχ  associated with each parameter have 
the same units, and can be directly compared with one 
another.   
 It is important to examine the sensitivity 
coefficients.  In order for a successful fit between data 
and the model, the sensitivity coefficients should be as 
large as possible.  Further, for two or more parameters 
to be sought simultaneously, the sensitivity coefficients 
need to be linearly independent [6].  A careful 
examination of the sensitivity coefficients can suggest 
how to adjust the conditions of the experiment in order 
to improve the data fit which in turn should improve 
the estimated values of the desired parameters.   
 Figures 5 and 6 show the sensitivity coefficients 
plotted versus frequency, computed from the model.  
Table 1 lists calibration values used in the model along 
with values  b1 = 0.2 MPa, b2 = 0.02 MPa, and b3 = 0 
(that is, the moduli were taken to be constant over all 
frequencies).  An important feature of  the  sensitivity 
curves shown in Figs. 5 and 6 are that the peak values 
lie near the resonance of the instrument, at 

ii km / =127 Hz.   This is where the instrument is 
most sensitive. In Fig. 5, showing amplitude 
sensitivity, the values quickly decay towards zero away 
from resonance.  The phase sensitivity, shown in Fig. 
6, approaches a non-zero constant at smaller 
frequencies, unlike that for amplitude sensitivity in Fig. 
5.  This indicates that phase data is more valuable than 
amplitude data at lower frequencies.   
 In both Figs. 5 and 6, sensitivity to E’ and E’’ have 
very different shapes.  This indicates the important 
property of linear independence which is essential for 
simultaneous estimation of multiple parameters bi.  
Finally, in both Figs. 5 and 6, the peak sensitivity to E’ 
is further from zero than that for E’’ (that is, the 
absolute value is larger).  This suggests that E’ will be 
easier to measure (or can be measured with higher 
confidence) compared to E’’. 
 As a first step, results are given next for analysis 
of phase data.  Working with phase data simplifies the 
computer coding, as no input data is needed on 
amplitude.  Further, the sensitivity analysis suggests 
that phase data contains more useful information, 
especially at lower frequencies.   
 A computer code was prepared to combine the 
phase data shown in Fig. 3, the model calculation given 



by Eq. (3-8), and a routine to minimize the sum-of-
square error.  The following best-fit values were 
obtained: b1 = 0.199; b2 = 0.038; and, b3 = -0.0322.  
With these values the storage and loss moduli 
computed from Eq. (7) and (8) are shown in Fig. 7.  
These moduli values agree somewhat with the values 
of the pointwise estimates (Fig. 4) near instrument  
resonance (127 Hz), however away from this point the 
shape of the frequency dependence is completely 
different.   
 In order to assess how well the parameter fits 
match the data, it is important to compare the model 
predictions with the experimental data values.  
Quantitative  comparison can be carried out by an 
examination of the residuals, the difference between 
the experimental data (phase in this case) and the 
model values computed at the best-fit parameter 
values.  (A comparison of the two phase curves 
themselves is useful only for qualitative observations.)  
Residuals show exactly where and how well the model 
matches the experimental data.  A desirable result 
would be residuals that are everywhere small and 
randomly distributed, representing a good fit between 
model and experiment. 
 The residuals, shown in Fig. 8, are near zero in the 
middle of the frequency range.  As frequency becomes 
smaller, the residuals move away from zero in a very 
systematic way, which suggests that there is a 
systematic mismatch between the model and the 
experiment at low frequency.  At large frequency, the 
residuals also move away from zero, but the variation 
across frequency is less systematic.  Although  
randomness in the residuals shows that there is noise in 
the data, it also means that the fit in this region may be  
as good as possible under the circumstances, because 
the systematic variations have been described by the 
model. 
 The systematic variations in the residuals suggest 
that the fit could be made better by changing 
something in the model or in the data.  The sensitivities 
suggest that higher frequencies do not contribute much 
(sensitivities are small there).  Thus, for the next step, 
the fit was repeated with a subset of the same data, 
over a smaller range of frequencies.  Using 
experimental data in the range 10 < f < 130 Hz, the 
following values were obtained by minimizing the 
sum-of-square-error:  b1 = 0.199; b2 = 0.038; and, b3 = 
+0.5607.  Note that the first two parameters did not 
change (to three digits), but the third parameter, the 
exponent in the power law, changed sign.  With these 
parameters the frequency variation of the moduli  given 
by Eq. (7) and (8) is much different than before, as 
shown in Fig. 9.   Now both the storage and loss 
modulus increase as frequency increases, somewhat 
similar to that found with the pointwise data analysis 
(see Fig. 2).  The residuals, shown in Fig. 10, are 
smaller than for the previous data fit.  In the range 30 < 

f < 80 there is some scatter in the residuals that appears 
to be random, however the residual values in this range 
are mostly positive, indicating a remaining bias in this 
frequency range.  Finally, because very strong 
systematic trends remain in the residuals for the 
smallest and largest frequencies in Fig. 10, the 
experimental data does not seem to be well uniformly 
described by the power-law model even for this subset 
of the data.   
 The results of the parameter estimates suggest that 
the power law variation of the moduli is useful over the 
lower frequencies, but may be inadequate for the whole 
range of frequency data available.  At larger 
frequencies, something else is going on that the power 
law does not describe.  However at this point in the 
project it is not clear whether some other model is 
needed, or whether the sensitivity of the instrument is 
inadequate at frequencies above instrument resonance.  
Certainly further work is needed.   
  
5.  FUTURE WORK 
 
 Future work will include a study  including both 
amplitude and phase data in the parameter fit.  Work is 
also underway to construct a more detailed physical 
model, based on theory for a rigid indenter oscillating 
on a viscoelastic halfspace.  Such a model may explain 
more of the frequency dependence seen in the data. 
  
6.  CONCLUSION 
 
 In this paper a sensitivity analysis is carried out for 
nanoindentation measurements.  The sensitivity 
coefficients can suggest what range of frequencies are 
most useful, and whether or not multiple parameters 
can be estimated from the data. Examination of the 
residuals provides information about the quality of the 
parameter fit and can suggest ways to improve the 
fitting procedure.  
 This paper is a report on work in progress.  Whole-
domain parameter estimation was carried out for a 
power-law variation of the storage and loss modulus 
with frequency.   Data analysis for all the data, and for 
a subset of the data, gave different trends for the 
variation of modulus versus frequency, and it is not 
clear which is most useful.  Additional work is needed. 
 Although parameter estimation provides additional 
tools for exploring experimental data, it also requires 
additional choices to be made.  These choices, such as 
choosing which range of data to analyze, must be made 
on the basis of previous experience.  Advances in data 
analysis can only augment, and never replace, the 
studied judgement of the experimentalist. 
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Table 1. Calibration data from the nanoindentation 
experiment. 
symbol value 
ki 331.31 N/m 
ci 0.0595 Ns/m 
mi 0.0005219 kg 
A 1.96 (10-7) m2

Fo 5.45 (10-6) N 
 
 
 

 
Figure 1.  Schematic of nanoindenter with indenter tip 
mounted on springs inside a capacitive transducer, all 
mounted on a piezoelectric stage. 
 
 

Fig. 2. Spring-dashpot model of instrument (parameters 
ki, ci, mi) and sample (parameters cs and ks).   
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Fig. 3.  Amplitude and phase of displacement measured 
on a PDMS (rubbery polymer) sample with the 
instrumented nanoindenter unit using a flat punch 
indenter (data file 7-22-05-1.txt). 
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Fig. 4  Storage modulus E’ and loss modulus E’’ for 
the PDMS sample interpreted from a point-by-point 
analysis of the nanonindenter data. 
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Fig. 5  Amplitude of the sensitivity coefficient with 
respect to changes in the storage modulus E’ and the 
and loss modulus E’’.   
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Fig. 6.  Phase of the sensitivity coefficient with respect 
to changes in the storage modulus E’ and the and loss 
modulus E’’.   
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Fig. 7.  Power-law variation of the storage modulus E’ 
and the loss modulus E’’ found from a best fit between 
the model and all the experimental data (10 < f < 300 
Hz).  Only phase data was included in the data fit. 
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Fig. 8.  Residuals (errors between data and model) 
based on phase information only for the same 
conditions shown in Fig.7.  
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Fig. 9.  Power-law variation of the storage modulus E’ 
and the loss modulus E’’ found from a best fit between 
the model and a subset of the experimental data (10 < f 
< 130 Hz).  Only phase data was included in the data 
fit. 
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Fig. 10.  Residuals (errors between data and model) 
based on phase information only for the same 
conditions shown in Fig.9. 


