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Abstract 

When deconvolving data collected in experiments involving axisymmetric flames, small 

errors that contaminate the data are magnified into large errors in the recovered 

distribution.  This effect can be mitigated by applying Tikhonov regularization, although 

a regularization parameter must first be chosen that is large enough to suppress error 

amplification, but not so large that it pushes the regularized solution from the unperturbed 

“exact” solution.  The regularization parameter is usually selected by trial-and-error, a 

time-consuming procedure that demands specialized mathematical knowledge on the part 

of the analyst. 

 This paper describes two algorithms that automatically select the regularization 

parameter based on the estimated magnitude of the errors that contaminate the measured 

data.   The first algorithm requires the analyst to specify this quantity, usually based on 

the results of repeated experimental trials, while the second algorithm estimates the error 

in the dataset using truncated singular value decomposition.  The solutions found using 

these algorithms are more accurate than those obtained by onion-peeling and Abel three-

point deconvolution alone.  Furthermore, since these algorithms select the Tikhonov 

regularization parameter automatically, deconvolution is carried out quickly and 

efficiently without requiring any specialized knowledge of inverse techniques on the part 

of the analyst. 
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Nomenclature 

A Coefficient matrix 

AOP Onion-peeling coefficient matrix 

Aλ Augmented Tikhonov matrix 

b Vector containing projected data 

bpert Vector containing perturbed projected data 

bλ Augmented Tikhonov RHS vector 

f(r) Field variable distribution 

fexact(r) Exact (unperturbed) field variable distribution 

L Tikhonov smoothing matrix, Eq. (12) 

N Number of annular elements 

P(y) Projected data  

p Useful rank of AOP 

U Orthogonal matrix obtained by SVD 

uj
T jth row of UT 

r Radial location 

R Flame radius 

S Diagonal matrix of singular values 

sj jth singular value 

V Orthogonal matrix obtained by SVD 

vj jth row of V 

x Vector containing field distribution data 

x~  Smoothed solution obtained using TSVD, Eq. (17) 

xpert Vector containing perturbed field distribution data 

y Axial location 

∆r Thickness of an annular element 

δb Perturbation vector of bpert, δb = bpert − b 

δx Perturbation vector of xpert, δx = xpert − x 

εreg(λ) Regularization error in the Tikhonov solution 
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εpert(λ) Perturbation error in the Tikhonov solution 

εRMS Root-mean-squared error of the deconvolved solution 

εtot(λ) Total error in Tikhonov solution 

κλ(r) Extinction coefficient [m-1] 

λ Tikhonov regularization parameter 

λAR1 λ found using replication-based technique 

λAR2 λ found using TSVD-based technique 

λ∗ Minimizer of εtot(λ) 

λ† Minimizer of εreg(λ) + εpert(λ) 

σ Standard deviation of projected data 

σm Standard deviation of the mean 
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Introduction 

The objective of many combustion experiments involving axisymmetric flames is to infer 

the distribution of a property within the flame field from optical measurements made 

through the flame.  For example, in line-of-sight-attenuation (LOSA) experiments light 

attenuation measurements made through the flame are used to reconstruct the radial 

extinction coefficient distributions, as shown schematically in Fig. 1 (a).  In a second 

example, emission tomography, the temperature distribution within the flame field is 

inferred from radiant intensity measurements taken at various locations outside of the 

flame.  In both experiments, optical data measured along a set of chord lines passing 

through the flame field, called the projected data, P(y), are deconvolved to recover the 

radial distribution of a field variable, f(r), over the range 0 ≤ r ≤ R.  These two variables 

are related by Abel’s integral equation, 

 

(1) 

which is a type of Volterra integral equation of the first kind, a class of equations that are 

moderately ill-posed.   

 Unlike many integral equations of the first-kind, Eq. (1) has an analytical 

solution, 

 

(2) 

where P′(y) = dP/dy.  This solution is of limited use, however, since projected data is not 

known as a continuous function of y, but only at a discrete set of axial locations.  

Furthermore, approximating the derivative using finite differences methods amplifies 

( ) ( )
∫

−
=

R

y

dr
yr
rrfyP ,2

22

( ) ( )
∫

−

′−
=

R

y

dy
ry

yPrf ,1
22π



 6

experimental error contaminating the projected dataset to unacceptable levels, 

particularly since the integrand of Eq. (2) becomes singular as y approaches r.  (This is, in 

fact, a symptom of the ill-posed nature of Abel’s integral equation.) 

 Although the analytical forms of Eq. (1) and (2) cannot be used to obtain f(r) 

directly, they are the foundation for the two most popular deconvolution methods used by 

combustion researchers.  In onion-peeling, the integral domain is split into N evenly-

spaced segments, which is equivalent to discretizing the flame field into N uniformly-

spaced annular elements that have a radial thickness ∆r = R/(N−1/2) as shown in Fig. 1 

(b).  Once this is done, the field variable is assumed to be uniform over each sub-domain 

of r and is extracted from the integral, leaving  

 

(3) 

where yi = i∆r, rj = j∆r, Pi = P(yi) and fj = f(rj).  Writing Eq. (3) for every projection and 

carrying out the integrals results in a matrix equation AOPx = b, where xi = f(ri), bi = P(yi), 

and  

 

(4) 

 

The element AOP,ij represents the contribution of f(rj) to the projected variable P(yi), and is 

equal to the length of the chord passing through yi that lies in the jth annular element.   

 An alternative way of solving for f(r) is through Abel three-point deconvolution.  

As in the previous method, the first step in this approach is to discretize the flame field 
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into N equally-spaced annular elements, which is equivalent to splitting the integral of 

Eq. (2) into N sub-domains, 

   

(5) 

A subset of the projected dataset is used to define an interpolating quadratic spline that 

approximates P(y) over each sub-domain, with {Pj−1, Pj, Pj+1} used over the jth domain, 

yj−∆r/2 ≤ y ≤ yj+∆r/2.  (At j = 0, P−1 = P1, and at j = N−1, PN = 0, in order to satisfy P′(0) 

= 0 and P(R) = 0, respectively.)  These quadratic splines are then differentiated with 

respect to y and substituted into Eq. (5).  Carrying out the integration results in an explicit 

expression for each fi in terms of the projected data, {Pj, j = i, i+1, …, N−1}.  Dasch [1] 

provides a more complete description of both onion-peeling and Abel three-point 

deconvolution methods. 

 

 

 

 

 

 

 

 

 

Fig. 1:  (a) LOSA axisymmetric flame deconvolution problem, and (b) discretization of 

the problem domain. 
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 Both onion-peeling and Abel-three-point deconvolution provide accurate 

solutions for f(r) when the exact projected data is known.  In an experimental setting, 

however, the projected dataset is inevitably contaminated with small errors that are 

magnified by deconvolution into large errors in the recovered field variable distribution.  

This is a consequence of the fundamental ill-posed nature of Abel’s integral equation and 

is exacerbated as N increases for both onion-peeling and Abel three-point inversion, 

severely limiting the deconvolved field variable resolution. 

 This effect can be mitigated by using a regularization technique to perform the 

deconvolution.  These techniques work by transforming the original ill-posed problem 

into a set of better-posed, or regularized, problems.  Regularized problems that closely 

resemble the original ill-posed problem are themselves ill-posed, having solutions that 

solve the original problem with a very small residual but are also highly sensitive to small 

perturbations in the problem parameters.  Using more regularization improves the 

solution stability, but at the expense of solution accuracy.   The degree of regularization 

is controlled by a regularization parameter, which is adjusted until an acceptable trade-

off between solution accuracy and stability is found.  Both onion-peeling and Abel three-

point inversion are regularization methods in their own right, where the regularization 

parameter is the number of annular elements used to solve the problem, N.  In both cases, 

using fewer annular elements (and few projections) produces solutions that are more 

resilient to errors in the projected dataset, but do not accurately represent the actual field 

variable distribution, particularly in regions where f(r) changes rapidly.  The solution 

becomes more accurate as N increases, but also becomes more sensitive to perturbations 

in the projected data.  These algorithms do not provide adequate control over the level of 
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regularization used to perform the deconvolution, however, since N is not easily adjusted 

to account for different levels of error contamination in the projected dataset and different 

field variable distributions, both of which affect the degree of error amplification caused 

by deconvolution. 

 In a recent work [2], we showed that Tikhonov regularization [3] is a better 

choice for a regularization technique.  In this approach the ill-conditioned matrix 

equation obtained by onion-peeling, AOPx = b, is augmented with a homogeneous system 

of regularizing equations λLx = 0, where L is a smoothing matrix and λ is a 

continuously-variable regularization parameter.  In our previous paper [2] we showed that 

λ can be adjusted with high fidelity until a near-optimum trade-off between accuracy and 

solution stability is found, for a specified field distribution, level of discretization, and 

degree of error contamination.   

 The most critical and difficult part of the above procedure lies in selecting the 

appropriate regularization parameter.  This is usually done heuristically, by examining 

the recovered field-variable distributions obtained using different values of λ and 

selecting one that is just large enough to suppress perturbations in f(r) due to error 

contamination in the projected data, but is not so large that it pushes the regularized 

solution too far away from the unperturbed solution.  This trial-and-error procedure is 

time consuming and requires specialized knowledge and experience on the part of the 

analyst.  

 The objective of this paper is to present techniques that choose λ automatically, 

thereby making Tikhonov regularization easier and less time-consuming to implement, 

particularly for researchers who are not familiar with regularization.  We first review the 
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ill-posed nature of Abel’s integral equation and how Tikhonov regularization is applied to 

solve this problem.  Next, we present two algorithms that choose the regularization 

parameter automatically.  The first algorithm can be used when a good estimate of the 

contamination of the projected dataset is available, most often by performing repeated 

experimental trials.  The second technique, recently developed by Jones [4], uses 

truncated singular value decomposition (TSVD) [5] to estimate the contamination of the 

projected data automatically, which in turn is used to select the appropriate level of 

regularization.  The performance of both algorithms is demonstrated and compared to 

that of onion-peeling and Abel three-point deconvolution by solving a problem inspired 

by a recent experimental LOSA study [6]. 

 

The Ill-Posed Nature of Abel’s Integral Equation 

The formal definition of what constitutes a mathematically ill-posed problem is attributed 

to Hadamard [7], who classified mathematically well-posed problems as those that have a 

unique solution that is insensitive to small changes to the problem parameters.  By 

inference, a mathematically ill-posed problem is one that either does not have a solution, 

has multiple solutions, or has a solution that is highly sensitive to small perturbations in 

the problem definition.  The flame deconvolution problem obviously has at least one 

solution, that being the field variable distribution that produced the experimentally-

observed projected data.  Furthermore, it can also be shown mathematically that Abel’s 

equation only admits one unique solution [8].  This can also be reasoned physically since 

the integral domain in Eq. (1) approaches zero as r → R, and f(R) is thus known with 
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certainty; a unique f(r) is then calculated from the outside-in, in an analogy to onion-

peeling in continuous space. 

 Instead, Abel’s integral equation is ill-posed because it violates Hadamard’s third 

criterion of well-posed problems, i.e. small perturbations in the problem definition (in 

this case experimental error contaminating the projected dataset) are magnified into large 

perturbations in the solution by the deconvolution process.  The mechanism by which this 

occurs is demonstrated mathematically by applying singular value decomposition (SVD) 

[5] to the onion-peeling matrix.  In this procedure, AOP is factored into U⋅S⋅VT, where U 

and V are N × N orthogonal matrices and S is a diagonal matrix of singular values.  (SVD 

can also be used to factor and solve rectangular matrix equations, which is done later in 

this paper.)  Because U and V are orthogonal, it is easy to rewrite AOPx = b as 

(6) 

or  

 

(7) 

where uj
T and vj are the jth rows of UT and V, and sj = Sjj is the jth singular value.  If the 

projected dataset is uncontaminated, Eq. (7) can be used to calculate the exact field 

variable distribution directly.  If a perturbation vector δb is added to the projected data 

contained in b, however, the SVD back-substitution returns a perturbed solution xpert = 

x+δx  
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The errors in the deconvolved field variable are amplified when, for some terms in the 

summation of Eq. (8), uj
Tδb approaches the magnitude of uj

Tb when sj is small.  This 

scenario is described in more detail in [4]. 

 This situation is demonstrated for the first of two deconvolution test distributions, 

f1(r) and f2(r), as shown in Fig. 2.  The field variables were derived by least-squares 

fitting 4th-order piecewise polynomials to two different sets of normalized soot-volume 

fraction data obtained from LOSA experiments carried out on high-pressure laminar 

flames [6].  The right-hand side vector, b, which contains the projected data, was then 

calculated by analytically integrating Eq. (1).  The elements of the perturbation vector, 

δb, were randomly-sampled from an unbiased Gaussian distribution having a standard 

deviation of 0.01, which is typical of experimental error encountered in LOSA flame 

experiments [6].  Figure 3 shows the solution to the first test problem obtained by 

deconvolving perturbed projected data using onion-peeling and Abel three-point 

deconvolution with N = 50, clearly demonstrating that small perturbations in the 

projected data are amplified by both deconvolution processes into large perturbations in 

the solution, δx.   

 This amplification mechanism becomes evident when Eq. (8) is used to 

reconstruct xpert; the corresponding singular values of AOP as well as uj
Tb/sj and uj

Tδb/sj 

are plotted in Fig. 4.  At small values of j, uj
Tb is much larger than uj

Tδb, and the 

corresponding terms in the summation are unaffected by the perturbation.  At a critical 

value of j, however, the terms in the numerator, uj
Tb and uj

Tδb, are similar in magnitude 

and sj is very small, thereby amplifying the influence of the perturbations on the 

deconvolved field distribution.   
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Fig. 2:   Normalized experimental data [6] and fitted field variable test distributions. 

 

  

 

 

 

 

 

 

 

 

Fig. 3:  Projected data and field distributions recovered by onion-peeling and Abel three-

point deconvolution for f1(r). 
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Fig. 4:  Singular values of AOP and back-substitution summation terms from Eq. (8) for 

f1(r). 
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Tikhonov Regularization 

The perturbation amplification mechanism described above can be suppressed using 

Tikhonov regularization [3].  Tikhonov regularization is best understood by first 

observing that solving Ax = b is equivalent to finding the value x∗ that minimizes 

(9) 

If A is well-conditioned, F(x) has a unique and well-defined local minimum.  If A is ill-

conditioned, on the other hand, F(x) is nearly degenerate; in other words, x∗ lies at the 

bottom of a long, shallow valley and many potential solutions xpert = x + δx that lie along 

the valley floor satisfy the matrix equation with a small residual, bpert = b + δb.  This 

scenario is shown in Fig. 5 (a) for the linear system Ax = b with A = [(4, 2.5), (2, 1)]T and 

b = [−4, −2]T.  The points plotted in Fig. 5 (a) are solutions of Axpert = bpert where δb is a 

randomly-generated perturbation vector that satisfies ||δb||2 < 0.283.   

 In Tikhonov regularization a second function, ½λ2xTLTLx, is added to F(x) to 

make it less degenerate, i.e. to make the valley floor steeper in the vicinity of x∗.  In this 

composite objective function, FTik(x) = F(x) + ½λ2xTLTLx, λ is the regularization 

parameter and L is a smoothing matrix, which in this problem is an (N − 1 × N) matrix 

that approximates the derivative operator in discrete space [9], 
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(11) 

and can be found efficiently by solving 

(12) 

As shown in Fig. 5 (b-d), increasing λ “steepens” the objective function topography and 

decreases the spread of perturbed solutions.  At the same time, however, increasing λ also 

shifts xλ away from solution of the original problem, Ax = b.    

 The effect of increasing λ can also be seen in the singular value spectra of Aλ, 

which is plotted in Fig. 6 for the case in which AOP (N = 50) is substituted for A in the 

augmented matrix equation. (The N−1 null singular values corresponding to the nullity of 

Aλ are not shown in Fig. 6 and are also excluded when reconstructing x using Eq. (8).)  

Increasing λ increases the small singular values that amplify δb, thereby suppressing the 

influence of these terms in the summation of Eq. (8).  This, in turn, reduces the 

perturbations in the deconvolved field distribution, as shown in Fig. 7 for the first LOSA 

test problem described above with ||δb||2 < 0.01.  If λ is too large, however, the singular 

value spectrum is excessively modified and the corresponding regularized solution is 

pushed away from the unperturbed “exact” solution.   

 Both of the above examples demonstrate that while increasing λ reduces the 

magnitude of perturbations in the solution, it also pushes the regularized solution away 

from the unperturbed solution.  The amount of regularization must therefore be carefully 

selected to obtain an acceptable trade-off between smoothness and accuracy; strategies 

for doing this are presented in the next section. 
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Fig. 5:  Plots of Ftik(x) = 1/2⋅xT(ATA+λ2LTL)x – bTAx for different amounts of 

regularization, with A = {(4, 2.5), (2, 1)}T and b = {−4, −2}T.  The analytical solution, x, 

is marked with a cross, while diamonds denote values of xλ
pert obtained by contaminating 

b with a perturbation vector that satisfies ||δb||2 < 0.283. 
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Fig. 6:  Singular value spectra of Aλ using different levels of regularization for the first 

test problem.  (Null singular values are not shown.) 

 

 

 

 

 

 

 

 

 

Fig. 7:  Deconvolved field distributions for the first test problem obtained by applying 

Tikhonov regularization to AOP(N=50), using different levels of regularization. 
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Strategies for Selecting the Regularization Parameter 

When selecting the regularization parameter, the goal is to minimize the overall solution 

error, which is due to both the contamination of the projected data and to the 

regularization process.  More formally, the total error is written as [5] 

(13) 

where x denotes the exact, unperturbed solution, pert
λx  is the regularized solution of the 

perturbed matrix equation, and 1
OP
−A  and 1−

λA  are the pseudoinverses of the onion-peeling 

and augmented matrices, respectively.  (Taking the pseudoinverse of Aλ removes its 

(N−1)-dimension null-space, thereby making Aλ
-1 compatible with b and δb.)  The total 

error is more easily quantified by taking the l2-norm of the vectors in Eq. (13), 

 

(14) 

where εreg(λ) is the regularization error and εpert(λ) is the perturbation error.  As 

demonstrated above, increasing λ suppresses the magnification of δb and decreases 

εpert(λ), but this also increases the εreg(λ) since λL obscures AOP in the augmented matrix 

Aλ as λ becomes large.  Thus, a value of λ must be chosen that is an acceptable trade-off 

between εpert(λ) and εreg(λ). 

 Most often, λ is selected heuristically with the aid of an L-curve, a plot of the 

smoothed solution norm, 
2

pert
λxL , against the residual norm, 

2OP
pertbx −pert

λA  [2, 5].  

This curve is shown in Fig. 8 for the first LOSA deconvolution problem described above 

with N = 50.    Solutions on the left-hand side of the curve are under-regularized since 
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indicated by the large solution norm, 
2

pert
λxL .  Points that lie on the right-side of the 

curve, on the other hand, correspond to over-regularized solutions that are smooth but no 

longer satisfy the original ill-posed problem.  The best trade-off between smoothness and 

accuracy is usually found by inspecting solutions that lie near the corner of the L-curve, a 

time consuming process that demands intuition and knowledge of regularization on the 

part of the analyst.   

 

 

 

 

 

 

 

 

 

 

Fig. 8: Tikhonov L-curve for the first test problem with N = 50. 
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using Eq. (15) directly, since bpert is known rather than b and δb individually.  An 

estimate of ||δb||2 is often available, however, usually from the variance of independently-

measured sets of projected data.  If this is the case λ† can be approximated using the 

discrepancy principle [5, 10], which states that λ should be chosen so that  

(15) 

where δe is most often set equal to ||δb||2.  The left- and right-hand sides of Eq. (15) are 

estimates of the regularization and perturbations errors, respectively, projected into the 

vector space of b.  The discrepancy principle can be used to select the Tikhonov 

regularization parameter automatically by first substituting an estimate of ||δb||2 into Eq. 

(15) and then solving for λ using a safe-guarded root-finding algorithm.   

 In some cases, however, an estimate of ||δb||2 is unavailable, for example when the 

number of experimental trials that can be performed is limited.  In this scenario, a 

recently-developed algorithm [4, 11] based on truncated singular value decomposition 

(TSVD) [5] can be employed to estimate the magnitude of the perturbation error 

contaminating the projected data.  This procedure starts with the singular value 

decomposition of AOP.  Next, the useful rank of AOP, p, is estimated by identifying the 

value of j where uj
Tδb/sj dominates uj

Tb/sj in the series {gj = uTbpert/sj, j = 1…N}.  Terms 

in the series having indices greater than the useful rank, i.e. {gj, j > p}, are unimportant in 

the reconstruction of x but are instead the source of the perturbations, δx, as described 

above.  A smoothed solution, x~ , can thus be recovered by truncating these N − p terms 

from the summation in Eq. (8),  
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which is then used to estimate ||δb||2 by 

(17) 

Finally, this estimate of ||δb||2 is substituted into Eq. (15), which in turn is solved for λ 

using a safe-guarded root-finding procedure. 
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Demonstration of Auto-Regularization Methods  

The performance of the auto-regularization methods described above is compared to that 

of onion-peeling and Abel three-point deconvolution techniques by solving the two 

deconvolution test problems shown in Fig. 2.  In order to simulate experimental flame 

conditions, projected data is contaminated with errors that are randomly-sampled from an 

unbiased Gaussian distribution having a standard deviation of 2001.0 .  Each element of 

the perturbed dataset, bpert, is then found by taking the average of 20 independent 

samples, and the corresponding standard deviation of the mean, σm, is given by 20σ , 

where σ is the standard deviation of the sampled data.  The expected value of σm is E(σm) 

= 0.01, a typical value for LOSA experiments carried out on laminar flames [6].   

 The performance of the deconvolution techniques is measured by the root-mean-

squared error of the deconvolved field distribution,  

 

(18) 

for solutions obtained using different numbers of projections, N.  (Note that N is the size 

of x.)  The onion-peeling, Abel three-point, and TSVD-based auto-regularization 

algorithm [6, 11] require only the projected dataset, bpert, to carry out the deconvolution.  

If the discrepancy principle is used to calculate λ directly, however, the analyst must 

provide an estimate of ||δb||2, which in this problem is approximated by 

 

(19) 

The corresponding regularization parameter is then found by solving Eq. (15) with a 

safeguarded secant root-finding algorithm [9]. 
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 At each value of N, 20 independent sets of projected data are supplied to the 

deconvolution algorithms, and the averages of the resulting εRMS values are plotted in 

Figs. 9 and 10 for the first and second deconvolution test problems, respectively.  (The 

Tikhonov regularization parameter found using Eq. (15) alone is denoted λAR1, while the 

one found using the TSVD-based auto-regularization algorithm [6, 11] is λAR2.)  Figures 

9 and 10 show that both auto-regularization schemes outperform onion-peeling and Abel 

three-point deconvolution at large values of N, and the Tikhonov solution obtained using 

λAR1 is the most accurate over the whole range of N.  In fact, the root-mean-squared 

errors of the Tikhonov solutions generally decrease as N increases, since the perturbation 

error is suppressed to the extent that the dominant error in the is caused by assuming a 

uniform f(r) over each element, which diminishes with increasing N.  Example 

deconvolutions obtained using N = 50 are shown in Figs 11 and 12. 

 The quality of the regularization parameter chosen by the two auto-regularization 

methods is assessed by plotting the perturbation, regularization, and total error as a 

function of λ for Tikhonov regularization performed on the first test problem using  N = 

20 and N = 50, as shown in Figs. 13 and 14, respectively.   (Note that λ∗ is larger for the 

N = 50 case compared to the N = 20 case in order to suppress the larger perturbation 

error.)  Both algorithms find values of λ that are reasonably close to λ* and λ† for N = 20, 

although the value of λ found by substituting the estimate of ||δb||2 found by replication 

directly into Eq. (15) is better than the one obtained through TSVD, which is why 

Tikhonov solutions calculated using λAR1 are more accurate than those found using λAR2 

for small values of N, as shown in Figs. 9 and 10.  These regularization parameters lie 

closer to λ∗ and λ† for the N = 50 case, however, since the predictions of ||δb||2 obtained 
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by replication and by TSVD become more accurate with increasing N.  Beyond this value 

of N, the performance of the two auto-regularization schemes is approximately equal. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig. 9:  Accuracy of different deconvolution techniques for the first test problem. 

 

 

 

 

 

 

 

 

 

 

Fig. 10:  Accuracy of different deconvolution techniques for the second test problem. 
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 Fig. 11:  Deconvolved field variable distributions for the first test problem, with N = 20. 

 

 

 

 

 

 

 

 

 

 

Fig. 12:  Deconvolved field variable distributions for the second test problem, with N = 

50. 
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Fig. 13: Tikhonov deconvolution errors for the first test problem, with N = 20. 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Tikhonov deconvolution errors for the first test problem, with N = 50. 
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Conclusions 

Tikhonov regularization is an effective way of solving axisymmetric flame deconvolution 

problems in which the projected dataset is contaminated with error, but the analyst must 

first identify a suitable regularization parameter.  Traditionally, this is done manually by 

trial-and-error, a time-consuming process that demands experience and intuition of the 

analyst. 

   This paper presented two algorithms for finding the Tikhonov regularization 

parameter automatically.  Both are based on the discrepancy principle, which uses an 

estimate of the error contamination to find a regularization parameter that gives a good 

trade-off between regularization error and perturbation error in the Tikhonov solution.  In 

the first technique, the analyst provides an estimate of the error contamination directly to 

the algorithm, which is usually based on the variance of results obtained from repeated 

experimental trials.  The second technique estimates the error directly using truncated 

singular value decomposition, which makes it ideal for situations where conducting 

repeated experiments is impractical.   

 Both algorithms provide solutions that are more accurate than those obtained by 

onion-peeling and Abel three-point deconvolution at moderate to high levels of flame-

field discretization, and solutions obtained using the first auto-regularization scheme are 

superior to all others at all levels of discretization.  Furthermore, since the regularization 

parameter is selected automatically, deconvolution is carried out quickly and efficiently 

without requiring any knowledge of regularization on the part of the analyst, making both 

algorithms ideal deconvolution tools for the combustion community. 
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