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ABSTRACT
  
The paper deals with the heat transfer analysis in a 
welding process: a method is developed to determine 
the shape of the 3-D phase change front and to estimate 
the temperature field within the solid part of the work 
piece. The problem is formulated and solved as an 
inverse phase-change problem by using an optimisation 
method. The direct problem is solved in the torch 
frame and so formulated as an eulerian approach. The 
interface between the weld pool and the solid region is 
parameterised by Bezier surfaces.  
The most important feature of the presented approach 
is that the liquid-solid interface as well as the 
temperature distribution within the solid region can be 
obtained from additional temperature data available in 
the solid region, without considering heat transfer and 
fluid flow in a molten zone. The estimate of these 
thermal characteristics allows then a thermomechanical 
calculation of the welded joint (calculation of the 
deformations and residual stresses). The validity of the 
numerical solution of the inverse problem is checked 
by comparing the results with the direct solution of the 
problem. 
Keywords: Bezier surface, Front of fusion, Heat 
source, Welding, Inverse method. 
 

1. NOMENCLATURE 
 
λs : Thermal conductivity of the Solid  
ρs : Density of the Solid  
c   : Heat capacity 
u : Torch velocity 
Γ : Liquid-Solid interface 
Ωs : Solid domain 
Ts : Temperature within the solid domain 
Te : Exterior temperature 
Timp : Imposed temperature 
Tf : Melting temperature 
h : Overall heat transfer coefficient 

e: Thickness of the work piece 
M: Number of points of measurement 
Ym: Temperature measurement at sensors location  
 

2. INTRODUCTION 
 
Welding is a complex process that involves many 
parameters that may have important influences on the 
final solidification structure and the properties of the 
welded joint [1]. During the welding process, the edge 
of two pieces of metal are melted and fused together. 
This is done using an intense local energy source. 
Transmitted energy causes the fusion of metal as well 
as the creation of a molten pool usually referred to as a 
weld pool. It is important to be able to control the size 
and shape of the weld pool [2]. It must be small enough 
to be manageable and minimize energy consumption 
but large enough to bond the two pieces properly 
Studies that deal with the inverse technique for the 
analysis of melting and solidification processes are 
limited. Earlier efforts have focused on one 
dimensional problem [3-5]. The literature includes the 
two-dimensional stationary arc welding problem in 
which Hsu uses transient temperature data from 
thermocouples imbedded in the solid region to 
determine through a Newton-Raphson interpolation 
procedure the transient position of the liquid-solid 
interface and the transient temperature distribution in 
the solid region [9]. Later, it includes the two-
dimensional design problem [7], [8] and the two-
dimensional inverse geometry problem in continuous 
casting of metals [9]. Recently, D.D. Doan and al. have 
developed an original method to identify the position 
and the shape of a 2-D melting pool using the 
parameterisation by Bezier splines [11] [14]. 
This work focuses on the application of the inverse 
technique and Bezier surfaces for identifying the 
location of the 3D liquid-solid interface. Furthermore it 
can be noted that in quasi steady state, the 



determination of the heat flux crossing this interface 
results directly from the knowledge of both the front 
location and the temperature field within the solid 
region. 
 

3. PROBLEM STATEMENT 
 
3.1 The Welding Process 
 
The phase-change phenomenon is considered in the 
following experimental conditions (Figure 1). A 
welding arc having a power of sufficient intensity 
moves with a constant velocity (axis x) and strikes the 
edge of two metal plates. A weld pool is formed and 
moves at the same velocity as the welding arc. 
 
 
 
 
 
 
 
 
 
 

Figure 1 Schematic diagram of welding process 
 

The mathematical representation of the problem 
includes the following physical processes and other 
general assumptions and conditions: 

1. The heat transfer between two plates during 
the welding process when the welding torch 
moves with a constant velocity is unsteady in 
a fixed coordinate system. A quasi-steady-
state problem can be achieved in a coordinate 
system that moves with the heat source. Thus, 
a moving coordinate system is used for the 
analysis of the inverse problem. This means 
that the size of the weld pool under the 
welding arc is constant while the material 
enters and leaves the computational domain. 

2. In quasi-steady-state, to obtain the shape of 
the weld pool and the temperature field in the 
solid domain, we formulate and solve the heat 
conduction problem within the solid region by 
considering the melting temperature as the 
imposed temperature at the liquid-solid 
interface. 

3. The Bézier surface with its control points is 
used to define the position of the liquid-solid 
interface. In this work, this assumption is used 
in order to form the initial position of the 
liquid-solid interface and to create a numerical 
experiment, i.e., the temperature data at the 
points of measurement located within the 
solid region. The location of the sensors is 

constant with respect to the moving 
coordinate. 

 
3.2 Modelling Equations 
 
The modelling equations which determine the 
temperature field within the solid region consist on the 
energy equation (1) with a moving heat source along 
the x axis, together with adiabatic conditions on the 
boundaries and a symmetric condition (2), the 
condition at the top and the bottom of the work piece 
(3) (4), the imposed temperature on the boundary at 

2x L=  and the specification of the melting 
temperature along the phase change front (5). 
 

[ ]( , , )
( , , ) ( , , )s

s s s s S
T x y z

c u T x y z x y z
x

ρ λ
∂

=∇ ∇ ∈Ω
∂

             (1) 

10 ; 0 0 0s s s
y

T T T
at y L at x L and at y

y x y
∂ ∂ ∂

= = = =− = =
∂ ∂ ∂

   (2) 

( )0
0 0

, ,
( , , ) 0s e

T x y z
hT x y z hT at z z

z
λ

∂
− + = = =

∂
       (3) 

( ), ,
( , , )ep

s e p e ep

T x y z
hT x y z hT at z z e

z
λ
∂

+ = = =
∂

       (4) 

( ) ( )2 , , , , ,imp fT T at x L T x y z T at x y z= = + = ∈Γ    (5) 
 
 
 
 
 
 
 
 
 

Figure 2 Schematic of spatial domain 
 
The shape Γ  of the isothermal phase change front has 
to be determined. Considering a heat flux balance 
equation to determine this shape is non practicable 
because no experimental data are available to 
characterize the heat flux distribution lost by the weld 
pool through this front. Therefore the shape of the front 
will be determined using an inverse approach which 
needs additional data given by the temperature 
measurements at M points located in the solid region: 
 
( ), , m

m m mT x y z Y=  1,2,...,m M=  ( ), , sx y z ∈Ω     (6) 
 
Hence the inverse problem, considered of interest here, 
aims the shape Γ  identification of the phase change 
front and the estimation of the temperature field within 
the solid part sΩ of the work piece for the modelling 
equations (1)-(6). The main difficulty in the resolution 
of this kind of problem comes from its ill-posed nature. 
That is why the measurement sensor number should be 
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appropriate to make the problem over-determined, or at 
least must be equal to the number of design variables. 
Thus, in general, inverse analysis leads to optimization 
procedures of an objective function S(X) of the least 
squares type built with ( , , ; )m m mT x y z Γ  the 
predicted temperatures by the modelling equation (1)-
(5), Γ  being fixed, and  the measured temperatures, 
equation (6). The inverse phase change problem is 
formulated as an optimization problem, it consists in: 
Finding Γ  which minimizes: 
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Then the inverse analysis is performed without solving 
heat transfer and fluid flow equations in the liquid 
region. The idea of the iterative algorithm is as follows: 
• Step 1: Choose an initial guess of the shape Γ and 

its parameterisation by Bezier surface (see next 
section). 

• Step 2: Compute the sensitivity of the predicted 
temperature at the sensor locations with respect to 
the vector parameter X of Bezier surface, defined 
by the coordinates of the control points. 

• Step 3: Use the Levenberg-Marquardt algorithm 
[10] to correct the vector parameter X. 

• Step 4: Repeat the procedure until convergence is 
achieved. 

 
Modelling of phase change processes requires smooth 
curves representing phase change fronts. Nehad Al-
Khadily [7] describes the phase change boundary with 
a two-dimensional coordinate system assumed in the 
molten zone. Each point at the phase change boundary 
is located by its radial and angular coordinates, i.e., 
radial distance from the keyhole center and the angular 
direction. Since the interface location is just a guess, 
the obtained temperature profile through the work 
piece will differ from the exact. The exact location of 
the liquid-solid interface as well as the temperature 
profile is found by use of the prediction-correction 
method. Choice of the number of nodes to form the 
interface plays a major role in obtaining accurate and 
efficient solution of the inverse problem. However, 
when the shape of the phase change fronts is complex 
this number of nodes is important i.e. more 
measurement sensors are needed.  As noticed before, 
the ill-posed nature of all inverse problems requires 
making them over-determined by performing an 
appropriate number of measurements. On the other 
hand, it is very important to limit the number of 
sensors because of commonly known difficulties with 
data acquisition. Furthermore, each measurement 
introduces not only variable information but also some 
noise. Application of Bezier surface permits to 
parameterize the phase change front using a smaller 

number of parameters and, consequently, reduce the 
number of sensors. 
 
3.3 Parameterisation of the front Γ by Bezier 
Surfaces 
 
Generally, the Bezier surface is formulated as follows: 
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where P(u,v) stands for any point on the Bézier 
surface, Pij is the control point, m n×  is the degree of 
Bézier surface, ( ) ( )1 1N m n= + × +  is the number of 
control point, u and v vary in the range [0, 1] and 

( ), ( )n n
i iB u B v  are the Bernstein polynomials. 

The majority of weld pool interfaces can be 
represented by cubic Bézier surface (with 

2, 3m n= = ). Such curves are based on twelve control 
points P0, P1, P2,…, P12 (Fig. 3) as presented in the 
following formulation. 
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This means that the shape of the interfaceΓ  is 
described by twelve control points (i.e. thirty six 
coordinates in the 3-D case). The proposed approach 
has a number of important advantages. First of all, the 
application of Bezier surface of degree ( )2 3×  ensures 
smoothness of the phase change front. The next very 
important advantage is that this application permits to 
limit the size of the vector parameter X to be identified. 
In practice, some coordinates of the Bezier control 
points are defined by additional conditions resulting 
from the physical nature of the problem. In the case 
studied here the coordinates of 20 23 00 03, , ,P P P P are 
assumed to be given and the following coordinates  



00 10 20 30 03 13 23y y y y y y yP P P P P P P= = = = = =  can be 
taken equal to zero. 
In the other hand, by using the symmetry condition, we 
have 21 20 22 23, ,x x x xP P P P= = 01 00x xP P= , 02 03x xP P= , 

11 10 ,x xP P= 12 13x xP P= .We impose 
 10 11 12 13z z z zP P P P= = =  
Finally, the size of the vector parameter X is limited to 
nine: ( )dim 9X =  with  
 

01 02 10 13 11 12 10 21 22, , , , , , , ,y y x x y y z y yX P P P P P P P P P =   . 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 surface of degree (2.3) with its twelve control 

points 
 

4. NUMERICAL RESULTS 
 
4.1 Numerical Experiment 
 
The solution of the inverse problem is considered with 
simulated data without and with noise (0.2%). 
Numerical computational has been performed by 
cast3M (http://www-cast3m.cea.fr) and Matlab. We 
use the optimisation toolbox to solve the identification 
problem. This toolbox calculates several times (number 
of function evolution) the function Cast3M to obtain 
the gradient.  
Several numerical experiments have been performed in 
order to: 
• Make the solution and convergence limits 

independent on computational parameters  
• Choose a suitable number of sensors and their 

locations and simplify the experimental design 
procedure 

For example, the temperature field ( , , ; )T x y z Γ  plotted 
in the figure 4 was obtained by solving the modelling 
equations (1)-(5) with a finite element approximation 
and the following numerical values:  
 

4 1.6124.1 10h Tε−= ×  W/m2K, 0.9ε =  (emissivity), 
60yL mm= , 1 540L mm= , 2 60L mm= , 3e mm= , 

37200 .s kg mρ −= , 1 1550 . .pc J Kg K− −= , 1 150 . .s W m Kλ −= , 

1450fT C= ° , 20impT C= ° , 110 .u mm s−=  and the 

following control points exp
00 ( 0.006, 0.,0.)P − , 

exp
01 ( 0.006, 0.0045,0.)P − , exp

02 (0.004, 0.0045,0.)P , 
exp

03 (0.004, 0.,0.)P , exp
10 ( 0.0075, 0.,0.0015)P − , 

exp
11 ( 0.0075, 0.008,0.0015)P − , exp

12 (0.005, 0.008,0.0015)P , 
exp

13 (0.005, 0.,0.0015)P , exp
20 ( 0.009, 0.,0.003)P − , 

exp
21 ( 0.009, 0.009,0.003)P − , exp

22 (0.006, 0.009,0.003)P , 
exp

23 (0.006, 0.,0.003)P . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Temperature field in the solid obtained by 
numerical experiment 

 
4.2 Results and Discussion 
 
4.2.1 Influence of initial guess 
 
The parameters vector to be found is: 
 

01 02 10 13 11 12 10 21 22

exp exp exp exp exp exp exp exp exp exp, , , , , , , ,
y y x x y y z y y

X P P P P P P P P P =    

 
(0.0045,0.0045, 0.0075,0.005,0.008,

0.008,0.0015,0.009,0.009)
= −

 

 
To perform the numerical procedure, the parameter 
coordinates are normalized in the range [0, 1] by 
putting exp exp /

iky iky

norm
yP P P=  with 0.006norm

yP =  for all 

control points at the bottom of the work piece and 
0.010norm

yP =  for the other one, 

10 10

exp exp 0.006 /0.003
x x

P P= + , 
13 13

exp exp 0.004 /0.002
x x

P P= − , 

10 10

exp exp /
z z

P P e= . So, the transformed parameter vector 
to be found is: 
 

( )exp 0.75, 0.75, 0.5,0.5,0.8,0.8,0.5,0.9,0.9normX = . 
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Different initial guesses of the parameters vector are 
studied for a case using twelve sensors as shown in the 
table I and table II 
For all of these five tests, the algorithm works well. Of 
course, we have the best solution when the initial guess 
approaches to the exact values. We show the evolution 
of estimated parameters in the case test No5 (Figure 5) 
 

Test 
No 

Initial guess Xinput 
(

)
01 02 10 13 11 12

10 21 22

, , , , , ,

, ,

y y x x y y

z y y

P P P P P P

P P P
 

( )S Γ

 (°C) 
Numb. of 
iterations 

1 (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 
0.1, 0.1, 0.1) 4.150 30 

2 (0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 
0.2, 0.2, 0.2) 2.487 25 

3 (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 
0.5, 0.5, 0.5) 3.340 27 

4 (0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 
0.9, 0.9, 0.9) 2.065 24 

5 (0.9, 0.9, 0.9, 0.9, 0.5, 0.5, 
0.8, 0.8, 0.8) 3.651 28 

Table I Influence of initial guess 
 

Test 
No 

Number 
of 

iterations 

Number 
of 

function 
evolution 

Error estimated (%) 

( )
( )

2exp

2exp

cal
ik ik

ik

P PP
P P

−∆
=
∑
∑
 

1 30 510 12.81 
2 25 402 9.73 
3 27 410 13.68 
4 24 426 13.25 
5 28 483 14.41 

Table II Error estimated 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5a Parameter evolutions (Test N°5) 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5b Parameter evolutions (Test N°5) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5c Parameter evolutions (Test N°5) 

 
4.2.2 Influence of Sensor Number and Sensor 
Locations 

 
The influence of both the number and the location of 
measurement points on the solution of the inverse 
problem are examined here. Two different sets of 
sensors respectively with 10; 12M =  for each set have 
been tested. The first one used five sensors on the top 
and five sensors on bottom of the work piece. The 
second one used six sensors on the top and six sensors 
on the bottom of the work piece. For each set, these 
sensors are located at 7.0 ; 8.0top

tcy mm mm=  and 
5.0 ; 5.5bottom

tcy mm mm=  (Figure 6). 
 
 
 
 
 
 
 

Figure 6 sensors location 
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The numerical procedure of these test cases starts from 
the same initial guess 

( )0.5, 0.5, 0.5,0.8,0.8,0.8,0.8,0.8,0.8inputX = .  
 
It is important to notice from these results that the 
accuracy of the solution depends much more on the 
locations than on the number of sensors. Furthermore, 
for these cases studied here, the relative error of 
parameters estimation varies between 4,5% and 16%. 
The best position corresponds to 7.0top

tcy mm=  and 
5.0bottom

tcy mm=  with 10 sensors. This set of sensors is 
sufficiently distant from the weld pool to give the best 
information. In all cases the difference between the 
estimated temperature and the measured temperature is 
relatively small as shown in Table III and Table IV. 
 

Sensor location 
xm(mm) ym(mm) zm(mm) 

( ), ,m
m m mY T x y z−

(°C) 
-6.0 8.0 3.0 5.21 
-4.2 8.0 3.0 1.58 
-2.4 8.0 3.0 3.72 
-0.6 8.0 3.0 2.4 
1.2 8.0 3.0 6.83 
3.0 8.0 3.0 2.65 
-4.0 5.5 0. 5.9 
-2.8 5.5 0. 2.0 
-1.6 5.5 0. 2.0 
-0.4 5.5 0. 2.5 
0.8 5.5 0. 6.0 
2. 5.5 0. 2.09 

Table III Comparison between measured and predicted 
temperatures (test case using 12 sensors) 

 
Sensor location 

xm(mm) ym(mm) zm(mm) 
( ), ,m

m m mY T x y z−

(°C) 
-6.0 8.0 3.0 5.36 

-3.75 8.0 3.0 2.22 
-1.5 8.0 3.0 4.1 
0.75 8.0 3.0 2.45 
3.0 8.0 3.0 5.6 
-4.0 5.5 0. 4.8 
-2.5 5.5 0. 1.45 
-1.0 5.5 0. 1.7 
0.5 5.5 0. 4.2 
2.0 5.5 0. 2.1 

Table IV Comparison between measured and predicted 
temperatures (test case using 10 sensors) 

 

5. CONCLUSIONS 
 
This paper discussed a method to identify the shape of 
the phase change front in a quasi-steady state welding 
process. The problem is formulated as an inverse 

geometry problem and solved iteratively, by 
minimizing a least square criterion. Fast convergence is 
achieved by modelling the shape of the interface using 
Bézier surfaces. The main advantage of this approach 
is due to the small number of parameter values to be 
identified, which consequently minimizes the number 
of required measurements. Moreover, this method is 
applicable for all welding processes: Tungsten Inert 
Gas (TIG); Metal Inert Gas (MIG); Metal Active Gas 
(MAG); Laser; Electrons Beam; Hybrid. 
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