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Introduction

Fault arc tests are performed in textile research and

certification of protective clothes. The protective clothes

are used by people working on electric installations

who are exposed to the risk of fault arc accidents,

potentially causing injury with heavy burns.
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Electric fault arc tests for the certification of protective clothes
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There exist different international standards for such arc tests.

One particular European test is the so-called CENELEC test

(pre-standard ENV 50354:2001). This box-arc test method

contains a visual assessment (after flaming, hole formation,

shrinking etc.) as a qualitative criterion and was extended and

improved by including additionally a quantitative measurement

of temperatures to get information about transmitted energy.
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An electric arc is fired between two vertically arranged
electrodes in a test circuit of defined voltage. After the
burning-time interval of tp = 0.5s the arc is switched off.

A surrounding box focuses thermal arc effects in direction to a
test plate with test object, which is arranged in a defined
distance to the electrodes. The object consists of a variable
number of textile layers stretched onto the test plate and a
skin-simulating copper calorimeter embedded by an isolating
block in the test plate.

The calorimeter is connected to a thermocouple, and so the
calorimeter temperature is measured from the arc ignition
(t = 0) until the end of measuring time tend = 30s.
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Such tests are expensive to realize, and extensive technical
equipment is required. A current of 7kA has to be controlled
and held stable in a circuit for half a second, the complete
arrangement has to sustain temperatures of several thousand
degrees. Moreover, the textile or clothing which is tested will be
destroyed during the test. For these reasons large series of arc
tests, for instance in order to take parametric studies, are not
practicable.

This gives rise to the need for a model of the test. A numerical
simulation of calorimetric arc effects based on the simulated
test was realized at Chemnitz University of Technology in
cooperation with the Saxon Textile Research Institute (STFI).
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The mathematical model

The underlying model is based on the following assumptions:

A nonlinear heat equation is set for the heat flux inside the
object (textile and calorimeter). An important part of the
nonlinearities takes the radiation which is modelled inside
the object by a special source term.
For modelling the boundary conditions a heat transfer
proportional to the temperature difference at the interesting
material borders is assumed.
Both boundary conditions and radiation source include a
not directly observable gas temperature G = G(t),
modelling the influences of hot gas between the arc and
the examined object.
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Notation:
x 1D local coordinate, x ∈ (0, l),
t time, t ∈ [0, tend = 30s],
u = u(x , t) temperature in the object,
G = G(t) temperature of the hot gas,
CA(x , t , u) apparent heat capacity,
κ(x , u) thermal conductivity,
frad(x , t , G(t), u(0, t)) radiation heat source term,
h0, hs heat transfer coefficients,
Q space-time cylinder (0, l)× (0, tend)

G and u relative temperatures w.r.t. ambient temperature T0.

Structure of the radiation source term:

frad(x , t , G(t), u(0, t))
= γe−γx (

qa(t) + βGas(G(t) + T0)
4 − βObj

(
(u(0, t) + T0)

4 − T 4
0
))
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Initial-boundary value problem of forward computations:

CA(x , t , u)
∂u
∂t

− ∂

∂x

(
κ(x , u)

∂u
∂x

)
= frad(x , t , G(t), u(0, t)),

(x , t) ∈ Q,

−κ(0, u(0, t))
∂u(0, t)

∂x
= h0(G(t)− u(0, t)), t ∈ (0, tend ],

κ(l , u(l , t))
∂u(l , t)

∂x
= −hsu(l , t), t ∈ (0, tend ],

u(x , 0) = 0, x ∈ [0, l].
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Under some additional assumptions, for example

G ∈ Dbox :=
{

G ∈ C[0, tend ] : 0 ≤ G(t) ≤ Gmax , t ∈ [0, tend ]
}

,

and using weak formulations the well-posedness of the
forward problem of computing u(x , t) with
(x , t) ∈ [0, l]× [0, tend ] can be shown.

Moreover, we have a Lipschitz estimate

‖u2 − u1‖L2(0,tend ;H1(0,l)) ≤ C ‖G2 −G1‖L2(0,tend )

with a constant C > 0 that does not depend on the gas
temperature functions G1 and G2
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The inverse problem

In order to make forward computations, we need the function G.

For solving the inverse problem of determining G we make
the test without textile layers: simplified test.
Temperatures on the back side of the calorimeter can be
measured for this simplified test.

Nonlinear forward operator F : Dbox → L2(0, tend) defined as

[F (G)](t) := u(l , t), t ∈ [0, tend ],

where u(l , t) means the corresponding function in the following
simplified initial-boundary value problem and
udata(t) = u(l , t) + noise expresses the real data.
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Simplified version of initial-boundary value problem:

CCu
∂u
∂t

− ∂

∂x

(
κCu

∂u
∂x

)
= frad(x , t , G(t), u(0, t)), (x , t) ∈ Q,

−κCu
∂u(0, t)

∂x
= h0(G(t)− u(0, t)), t ∈ (0, tend ],

κCu
∂u(l , t)

∂x
= −hsu(l , t), t ∈ (0, tend ],

u(x , 0) = 0, x ∈ [0, l].
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Parameter specification for real data experiment:

l = 1.6mm,

κCu = 392W ·m−1K−1,

CCu = 3.4265 · 106J ·m−3K−1,

γ = 2.05 · 105m−1,

qa(t) = 7.055 · 104W ·m−2 · χ[0,tp](t),

βGas = 1.114 · 10−9W ·m−2K−4,

βObj = 4.72 · 10−8W ·m−2K−4,

h0 = 40W ·m−2K−1,

hs = 15W ·m−2K−1.
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Approaches for approximate solutions
Least-squares approach without regularization

‖F (G)− udata‖2
L2(0,tend )

→ min, s.t. G ∈ Dbox

Second order Tikhonov regularization

‖F (G)−udata‖2
L2(0,tend )

+α‖G′′‖2
L2(0,tend )

→ min, s.t. G ∈ Dbox

Descriptive regularization: I. only decay of G on [2tp, tend ],
II. multi-parameter approach (monotonicity and convexity)

‖F (G)−udata‖2
L2(0,tend )

+α‖G′′‖2
L2(0,tend )

→ min, s.t. G ∈ Ddescr
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A case study with synthetic data:

G∗(t) :=

(
125

`
4 − (t − 2)2´

, t ≤ 3s
345 exp

“
3−t

4

”
+ 30, t > 3s

Discrepancy method Quasi-optimality criterion
α ‖Gα−G∗‖

‖G∗‖ α ‖Gα−G∗‖
‖G∗‖

δ = 10−4 2.8243 · 10−5 0.0112 1.1973 · 10−6 0.0056
δ = 10−3 1.668 · 10−3 0.0202 4.2391 · 10−4 0.0152

Errors of Tikhonov regularization for different parameter choice strategies

Least-squares Tikhonov regularization Descriptive regularization
δ

‖Gα−G∗‖
‖G∗‖ α

‖Gα−G∗‖
‖G∗‖ α

‖Gα−G∗‖
‖G∗‖

0 6.7512 · 10−5 – – – –
10−4 0.0266 1.1973 · 10−6 0.0056 9.6977 · 10−7 0.0046
10−3 0.1475 4.2391 · 10−4 0.0152 3.4337 · 10−4 0.0136

Error comparison for different approximate solution approaches
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Now real-life data reconstructions:
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Gas temperature least-squares reconstruction without regularization
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Forward computations with textile layers

For the three obtained approximate gas temperature functions

we make forward computations with textile layers.

We use two textile layers both with a thickness of 0.7 mm.
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