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ABSTRACT 
 
The computation of Riemann-Liouville and 
Caputo fractional derivatives in the presence of 
measured data is considered as an ill-posed 
problem and treated by mollification 
techniques. It is shown that, with the 
appropriate choice of the radius of 
mollification, the method is a regularizing 
algorithm, and the order of convergence is 
derived. Error estimates are included together 
with numerical examples of interest. 
 
1. INTRODUCTION 
 
Fractional derivatives and partial fractional 
derivatives have been applied recently to the 
numerical solution of problems in fluid and 
continuum mechanics [4], viscoelastic and 
viscoplastic flow [2] and anomalous diffusion 
(superdiffusion, non-Gaussian diffusion) [3], 
[5]. Numerous citations to several other 
applications of fractional derivatives to 
problems in physics, finance and hydrology can 
also be found in these articles. 
The usual formulation of the fractional 
derivative, given in standard references such as 
[8], [10] and [9], is the Riemann Liouville 
definition. 
The Riemann-Liouville fractional derivative of 
order ��� � of an integrable function � defined   
on the interval ��� �� , is given by the convolu- 
tion integral 
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where ����  is the Gamma function and 
   
indicates the set of natural numbers. 
This definition leads to fractional differential 
equations which require the initial conditions to 
be expressed not in terms of the solution itself 
but rather in terms of its fractional derivatives, 
which are difficult to derive from a physical 
system. In applications it is often more 
convenient to use the formulation of the 
fractional derivative suggested by Caputo [1] 
which requires the same starting conditions as 
an ordinary differential equation of order� . 
 
The Caputo fractional derivative of order  

��� � of a differentiable function � defined on 
the interval ��� �� , is given by the convolution 
integral 
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One important difference between the Caputo 
fractional derivative and the Riemann-Liouville 
fractional derivative, besides the different 
requirements on the function � itself, is that the 
Caputo derivative of a constant is zero. For 
further details and relationships between these 
two types of fractional derivatives as well as a 
historical perspective on fractional derivatives 
in general, see [8]. 
 
Fractional differential operators are particular 
first kind Volterra integral equations (nonlocal 
operators) with weakly singular kernels and the 
above formulations are of little use in practice 
unless the data is known exactly. 
 



The purpose of this paper is to present and 
analyze a stable method, based on mollification 
techniques, for the numerical computation of 
fractional derivatives when the data function 
� ���
�
� is measured with noise. 

 
The manuscript is organized as follows: in 
sections 2 the original ill-posed problem and the 
associated regularized (mollified) problem, 
respectively, are formulated. The numerical 
procedure, together with the stability and error 
analysis of the algorithm are investigated in 
section 3. Numerical examples are also 
provided in this section. 
 
For basic properties and estimates associated 
with mollification in R�  the reader is referred to 
[7]. 
 
2. REGULARIZATION 
 
Without loss of generality, we restrict our 
attention to functions defined on the interval 

������ � and consider the case ��� �  
 
2.1 Caputo Fractional Derivatives 
 
We would like to determine the Caputo 
fractional derivative of order ��   
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from noisy data � �� �
� , a perturbed version of  

the exact data function  � ��� �   
Equation (2.1) is a convolution integral equation 
that can also be expressed as  

� �
�	 � � �

� 	� 
  
where the kernel function � is given by  
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Instead of recovering  � �	 �
�  , in the presence 

of noise in the data, we look for a mollified 

solution � �
� �
 	 �
� �

� obtained from the pre- 
vious equation by convolution with the 

Gaussian kernel  ��   (see [7]). Consequently, 
instead of equation (2.1) , we have 
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That is, the mollified integral formula becomes, 
after suitable extension of the data function (see 
[7]), 
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(2.2) 
 
The main properties of the method are given in 
the following theorem. The proof can be found 
in [7]. 
 
Theorem 2.1  
If the functions  � 	   and  � �  are uniformly 

Lipschitz on  �   and  �
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there exists a  constant � , independent of  � , 
such that 
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Stability is valid for each fixed  �� �   and the 
optimal rate of convergence is obtained by 
choosing � ��� �� . 
The mollified Caputo fractional derivative, 
reconstructed from noisy data, tends uniformly 
to the exact solution as ���� � �� �� � � 0.  

This establishes the consistency, stability and 
convergence properties of the procedure. 
 
2.1.1 Abstract Algorithm  
 
The abstract algorithm based on the stable 
formula (2.2) is as follows: 
1. Compute  
 � ��  (this automatically provides  

� ��� � �� ) 

2. Evaluate the derivative � ��
 �
�

� of the molli- 

fied data function �
 �
�

�   



3. Use a quadrature formula to estimate 
� �� �
 	 �
�

� from equation (2.2).  
 
2.2 Riemann-Liouville Fractional Derivatives  
 
The evaluation of Riemann-Liouville fractional 
derivatives of order ��   
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� �� 	� ��� �� � � �         (2.3) 
 
can be reduced to the treatment of Caputo's 
fractional derivatives under mild conditions on 
the function � . In practical situations it is 
possible to consider the discrete noisy data as 
the perturbed sample of an underlaying smooth 
(continuously differentiable) function. In this 
case, after integrating by parts, we get 
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and we only need to estimate � �� �� �	 � �

� . 
 
3. NUMERICAL PROCEDURE  
 
To numerically approximate  � �� �
 	 �

�
�  , a 

quadrature formula for the convolution equation  
(2.2) is needed. The objective is to introduce a 
simple quadrature and avoid any artificial 
smoothing in the process. To that effect, we 
consider a uniform partition  �   of the interval  

������� �   with elements  � �� ��� � �� � �    
�� ����� �� ,   �� �� �  and, after the noisy 

data function� � has been suitable extended and 
the radius of mollification automatically 
selected (see [7]), we define a piecewise 
constant interpolant of the corresponding 
mollified numerical derivative given by 
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and  D�   and  D�   represent the forward and 
centered finite difference approximations, 
respectively, to � �
 �

�
�
	 . 

The discrete computed solution, denoted  
� �� ��	 �
� �

�  is then obtained with the quadrature 
formula 
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which, when restricted to the grid points, gives 
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Here the quadrature weights � � �� �� � �  are   

integrated exactly with values 
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The error analysis is discussed next. The proof 
can be found in [6]. 
 
 Theorem 3.1 
 If the functions  � 	   and  � �  are uniformly 

Lipschitz on   �  and   �  and  �� �   the discrete 

versions of �  and � �  respectively, satisfy  
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Corollary 3.2  
Under the hypothesis of Theorems 2.1 and 3.1, 
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The error estimate for the discrete case is 
obtained by adding the global truncation error 
to the error estimate of the nondiscrete case. 
 
3.1 Numerical Results 
 
In this subsection we discuss some numerical 
tests performed with the algorithm introduced 
in the previous sections. 

The discretization parameters are as follows: 
the number of time divisions is � , �� �   
��� ��� � and � �� ��� � �� � � �� �� � �� �� �   
The use of the average perturbation value  �   is 
only necessary for the purpose of generating the 
noisy data for the simulations. The filtering 
procedure automatically adapts the 
regularization parameter to the quality of the 
data [7]. 
Discretized measured approximations of the 
data are simulated by adding random errors to 
the exact data functions. Specifically, for an 
exact data function � , its discrete noisy version 
is 
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where the � �� �� 	 are Gaussian random variables 

with variance  � ��� ��   
 
In order to test the stability and accuracy of the 
algorithm, we consider two examples and a 
selection of average noise perturbations. The 
fractional derivative errors are measured by the 
relative weighted l� - norms defined by 
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In the examples that follow, we observe that  
�
�

�����
	 �   is the Abel's transform of �  and 

also that ������
	 �  can be interpreted as an 

approximation to the ordinary derivative ���   
 
Example 1 
The exact data in this example is provided by 
the identity function  � � �� � ��  � ���� �   
The exact Caputo fractional derivatives are 

given by 
�� � �
��� �� � ��	 � �

��
��

�

�� �� � �� < 1,   

� ���� �   
 
The relative errors in the approximation of the 
fractional derivatives as functions of the 
amount of noise in the data are shown in Table 
3.1. A graphical illustration of the exact and 
computed fractional derivatives appears in 
Figure 3.1. 
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Fig. 3.1. Example 1. Exact and computed (- o -) 
fractional derivative functions with parameters 

������� �  and ����� �  

 
Relative �� � Norm Fractional Derivative Errors 

�� �  0.25 0.50 0.75 0.99 

0.00 0.0023 0.0041 0.0148 0.0591 

0.05 0.0016 0.0066 0.0159 0.0599 

0.10 0.0017 0.0063 0.0162 0.0604 

Table 3.1. Example 1. Fractional derivative errors as 
functions of � for �������� �  

 
Example 2 
The exact data function and Caputo fractional 
derivatives are, respectively,  �� �� � ��   and  
��� �
�� � ��

�

�

� �
� � � ���� � � ���� �   

The relative errors in the approximation of the 
fractional derivatives as functions of the 
amount of noise in the data are shown in 
Table 3.2. A graphical illustration of the exact 
and computed fractional derivatives is provided 
in Figure 3.2. 

In all cases, stability with respect to 
perturbations in the data has been restored and 
the physical quality of the numerical 
reconstructions is quite acceptable even in the 
presence of relatively large amounts of noise in 
the data. As �  increases, the problems become 
more ill-posed, and for each noise level the re- 
lative errors increase accordingly, as expected. 

 
Relative �� � Norm Fractional Derivative Errors 

�� �  0.25 0.50 0.75 0.99 

0.00 0.0043 0.0060 0.0083 0.0095 

0.05 0.0033 0.0089 0.0105 0.0148 

0.10 0.0075 0.0014 0.0225 0.0668 

Table 3.2. Example 2. Fractional derivative errors as 
functions of � for �������� �  
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Fig. 3.2. Example 2. Exact and computed (- o -) 
fractional derivative functions with parameters 

������� �  and ����� �  
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