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ABSTRACT 
 
A numerical marching scheme is introduced for 
the recovery of the solutions, gradient 
distributions and initial conditions in a one 
dimensional Luikov's drying system in a porous 
medium with space dependent coefficients. In 
this problem, only Cauchy noisy data at the 
active boundary is given and no information 
about the amount and/or character of the noise 
in the data is assumed. The error analysis for the 
algorithm is discussed and numerical examples 
of interest are presented. 
 
1. INTRODUCTION 
 
Thermal drying involves the vaporization of 
moisture within a product by heat and the 
evaporation of moisture from the medium and 
has important applications in many different 
fields, including food and environmental 
engineering. A theoretical model for simulta- 
neous heat  and  mass transfer was developed by 
Luikov [2].   
 
In [1],  the authors discuss  a  Luikov  system of  
the form: 
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where ��� �  is a transient function associated 
with the dry air flow, and initial conditions 
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The constant coefficients � �� � � and � are defi-  
ned as 
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The terms � � � � ���

�  � ��� �	 � 
� 
�� and refer 

to the Luikov number, Possnov number, Kosso- 
vitch number, heat Biot, mass Biot, and heat 
flux flux respectively. The coefficients � and  
��  represent the thermal diffusivity and the 

moisture diffusivity of the porous medium. 
Deterministic, stochastic, and hybrid solutions 
were introduced in [3] and [6] for estimation of  
parameters in the above problem. 

In this paper we consider nonhomogeneous 
thermal and moisture diffusivities of the porous 
medium so that the Luikov number and all the 
coefficients, � � �� � � and �  of the model, are 
space dependent functions. We will introduce a 
stable numerical marching scheme based on 
discrete mollification for the recovery of 
�� �� � � , �� �� � � , �� ��� � � , �� ��� � � , ����� �   

and ����� � throughout the domain �����������      

in the�� �� � plane satisfying 
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Note that the functions � 	 
� �� � � and ��  are only 
known approximately. 

This problem is an inverse Cauchy problem 
involving a parabolic system. The implemen- 
tation of these algorithms do not require any  
information about the amount and/or charac- 
teristics of the noise in the data since the 
mollification parameters are chosen automa- 
tically at each step using the Generalized Cross 
Validation (GCV) method. For general referen- 
ces to the GCV method see [7]. 
 
The paper is organized as follows: discrete 
mollification and numerical differentiation 
results are summarized in Section 2. In Section 
3, the numerical space marching algorithm is 
specified. Stability and error estimates are also 
presented in this section.  Section 4 contains nu-   
merical examples of interest. 
 
 
2. MOLLIFICATION 
 
A detailed description of the regularization 
procedure of  Mollification  and  its applications  
can be found in [4]. 
 
2.1 Discrete Mollification 
 
Let ������ �  and � �� 	� ���� ��� � � �� �  

I⊂ satisfying  0 �  � 	 ��� ��� � �� � � � . 

Set � ��� � ���� � and �
�	� �� � �� � ��� � for 

�� 	� ���� ��� �� 
 Suppose that � ����� �� � ��   

is a  discrete function defined on � , then the �   
mollification of  �   is defined as a convolution 
with the Gaussian kernel  
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where  � � �� � �� � �� 
  ,  ��� �  �� � ,  and 
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2.2 Numerical Differentiation 
 
The centered finite difference operator, D� ����  
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Let � �� � � �� 	� ���� � � �� � � �� � � ��

� � �   

be a perturbed discrete version of a function ��   
where �  is the maximum noise level. The follo-  
wing lemma, establishes  the  numerical conver- 
gence of centered difference discrete mollified 
differentiation for a fixed ��    
 
Lemma 2.1 
If � is uniformly Lipschitz on � and the discrete  

functions � and� � satisfy  ��� � �
 ��

� ,     

then there exist constants �� independent  of  � ,  
and � � , such that  
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We define the discrete mollified centered differ- 
ence D����

� � D�� � �� ���
�� ��  by restricting  

D�� ����   to the grid points of  � �� ��  . The 
next theorem establishes a useful upper bound 
for the operator  D�

�  . 
 
Theorem 2.2 
There exists a constant �� independent of �� such 
that 
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For the proof of these statements see [4]. 

 

 



3. THE IDENTIFICATION PROBLEM  

The problem consists on the identification of the 
vapor diffusion, �� �� � � , initial vapor distribu- 
tion, �� ��� � , vapor flux �� ��� � � , moisture 
diffusion �� �� � � , initial moisture distribution,  

�� ��� � and moisture flux, �� ��� � � , for all  
� ��� �   throughout the domain  � � � ���� ����   
satisfying system  ���   

The available data � 	 
� � �� � �
� � � and ��

� are dis-  
crete noisy functions with maximum noise level  

� .We define 
�� ��
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 and assu- 

me that� �������� �� � �� � for all ������ � .    
 
We begin by stabilizing the problem using 
mollification. In this regularization process, a  
� - mollification is performed on each of the 
available data functions, � ��

�  	 ��
�
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� and  � ��

�  

Note that � - mollifications of � ��
�

	 
� �� �
� �  and 

��
� are taken with respect to �  using ����

����
�
���    

and �
��� respectively.  

 
The numerical marching scheme, together with 
the mollification method, is described next with  
�� �� � ��   and �� �� � ��    denoting the regularized 

functions.  
  
3.1 Numerical Marching Scheme  
 
Let �� and �� be positive integers, � �� � �  
� �
��
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and �	� 	�� ���� ���� ��	 ��  
 
We introduce the following discrete functions 
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The space marching algorithm is defined as 
follows: 
1. Select �

�� , �
�� , �

��� , and � ����   

2. Perform mollification of ��
� , 	�

� , and � ��
�  

Set: 
ο �

��
� � ��
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3. Perform  mollified  differentiation  in  time of  
� � � �
� 	 
 �� �� � �� � �� � �

� � �� ��
� � 	� � � 	� � � 	� � � 	�� � � �

� � � � . 

Set: 
ο D �
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D �
��
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� �" � � 	��� �   and  

D �
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� �" � � 	��� � . 

The  numerical  marching  scheme  in  space   is  
defined in step 4. 
 4.  Initialize  ��� �  Do while ��� �� 
 . 

(a) �� � �� 	 � 	 � 	
� � �  ��
� � �   and  

             �� � �� 	 � 	 � 	
� � �  ��
� � � . 

(b) �� �
�� ��

� 	 � 	 �
� � ��� ���

� �
� � �  

� �� �� �� �� 	 � 	
� ��� ! �� !� �
 ��  . 

(c) �� �
�� ��

� 	 � 	 �
� � ��� ���� �
� � �  

� �� �� �� �� 	 � 	
� ��� ! �� !� �
 ��  

(d) Select  � � � �� � � �� � � �
� � �� ��� � � �
� � � �   

(e) Perform mollified differentiation in time 
             of  �� �� ��� � �� 	 � 	 � 	

� � �  �
� � �  ��� 	

��
� . 

             Set : 
                o. D �
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       (f) Set  ��� �� �   



Remark: The  discrete  approximations ����� ��  

and �� ��� ��  are given by ���
� and �����  respecti-  

vely. 
 
For a proof of the statements in the next 
two subsections see [1]. 
 
3.2 Stability Analysis  
 

Denote �� � ��� � �� � 	
# #	� and # � �  

��� ��� # Theorem 2.1 and Theorem 2.2 
establish stability and formal convergence, 
respectively, of the marching scheme presented 
above. 
 
Theorem 3.1  
There exists a constant ��  such that 
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3.3 Error Estimates  
 
Denoting the error between the calculated 
discrete functions  � ��� 	 � 	

� � �   and the restriction 
to the grid of the mollified exact functions     
� � �� � � ��� �� 	� � �� 	�� � by �� 	

� � = �� 	
� - � � �� �� 	��  

and � � �� �� 	 � 	
� � �� � � �� 	�� � 
 � , proceeding 

similarly with the discrete functions related to 
�� ��� � �  we  define �� =����� �

� � |,� ��� � ,  

� ��� �� �
� �� �� � . 

 
Theorem 3.2  
There exists a constant �� such that  

� ����� �� ��� � �� � � � ��  
 

4. NUMERICAL IMPLEMENTATION 
 
In this section the numerical results of an 
example of interest is presented. To obtain the 
required data functions  ��� �� �   and  ��� �� �   
for the inverse problem, it is necessary first to 
solve the direct problem. We set the following 
dimensionless values for the parameters in 
Luikov's model: 
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Thus, the system of partial differential equations 
becomes 
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and initial conditions  
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and �� 
�� �� � �� 
   are chosen to satisfy the 
required compatibility conditions at  �� �   to 
avoid potential space located patches in the 
solution for positive times that will render the 
solution of the inverse problem impossible. See 
[5].  
 

The numerical solution of the direct problem is 
computed by the method of lines and the 
discrete perturbed data functions for the inverse 
problem are generated by adding random errors 
to the "exact" computed solutions of the direct 



problem � ��� �� � �� and 	 ��� �� � �� as well as 
the exact flux functions  
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where the  ��� ’s  are Gaussian random variables 
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The relative weighted 	$ error for � is calculated 
as  
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The relative 	$ errors for �� , �� , �� ,� and �� are  
computed in a similar fashion. 
 
Example  
We wish to approximately identify the functions 
�� �� � � ,  �� �� � � , �� ��� � , �� ��� � , �� ���� � �  and  
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Relative  	$   errors for  �  and  �   are reported 
in Table 1 as a function of  �  and as a function 
of   ��  in Table 2. Both these results and those 
shown in Figures 1 through 6 emphasize the 
stability and consistency of the marching 
scheme. For Table 1 and Figures 1 through 6,  

����� �   and  �	��� �  . In Table 2 and 
Figures 1 through 6, ������ . 
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�  �� �� � �  �� �� � �  
0.001 0.00745 0.04766 
0.005 0.00792 0.04435 
0.01 0.00953 0.12241 

Table 1 
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1/64 0.00959 0.12421 
1/128 0.00953 0.12241 
1/256 0.00452 0.01227 

Table 2 
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Fig. 1. Exact and computed  

temperatures at  �� �   
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Fig. 2. Exact and computed  

moistures at  �� �  
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Fig. 3. Exact and computed  

heat fluxes at �� �  
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Fig. 4. Exact and computed  
moisture fluxes at �� �   
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Fig. 5. Exact and computed  

temperatures at  �� �   
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Fig. 6. Exact and computed 
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