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Scattering data for a potential in the Schrödinger

equation comes in many different forms:

• Phase shift

• S-matrix

• Weyl function

• Spectral density function

• Left and right reflection coefficients

• Jost function

• Scattering amplitude

• ... more exotic choices
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Inverse scattering: Given some form of scat-

tering data, find the corresponding potential.

Many analytical and numerical approaches have

been developed Most well known ones involve

integral equations (Gelfand-Levitan, Marchenko,

...)

But these are not always so well suited to

numerical computation due to high operation

counts, and certain sources of instability

This presentation: Approach via overdeter-

mined hyperbolic boundary value problems, which

adapts in a fairly straightforward way to many

forms of scattering data (and scattering prob-

lems for other differential operators) and has

computational advantages
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Let V (x) = V (|x|) be a central potential on R3

which is sufficiently rapidly decaying at ∞.

The Schrödinger equation

iut = ∆u+ V (x)u

has solutions of the form

u = e−ik
2tY mℓ (θ, φ)

ψ(|x|)
|x|

where ψ = ψ(r) satisfies

ψ′′+(k2−V (r)− ℓ(ℓ+ 1)

r2
)ψ = 0 0 < r <∞

for some ℓ = 0,1,2, . . .
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There exists a physically acceptable solution ψ,

unique up to a constant multiple, satisfying

ψ(r) = O(rℓ+1) r → 0

The phase shift comes from examining the be-

havior of this solution as r → ∞:

In the absence of a potential we would have,

as r → ∞,

ψ(r) = C
√
rJℓ+1/2(kr) ≈ C sin (kr − 1

2
ℓπ)

With the potential present we get instead

ψ(r) ≈ C sin (kr − 1

2
ℓπ+ δ)

for some δ = δℓ(k). This is the phase shift.
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The inverse problem is

Determine the potential V (x) given phase shift

data δℓ(k).

Two most common special cases:

• Fixed ℓ ∈ {0,1,2, . . . }

• Fixed k ∈ R

Older history (uniqueness, existence, construc-

tive methods ...)

Levinson 1949, Bargman 1949, Borg 1949,

Gelfand-Levitan 1951, Marchenko 1952, Jost-

Kohn 1952, Kay 1955, Fadeev 1958, and lots

more
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Bound state data

For fixed ℓ we may regard

ψ = ψ(r, k)

defined for r ≥ 0 and k ∈ C.

For a finite number of special values of k =

iκj, κj > 0 we may have ψ ∼ e−κjr as r → ∞,

in which case ψj ∈ L2(0,∞) is a bound state

wave function for V .

Denote

sj =

(
∫ ∞

0
|ψj(r)|2 dr

)−1

The bound state data is

{κj, sj}nj=1
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Marchenko’s method (ℓ = 0 case)

• Set

F (x) =
1

2π

∫ ∞

−∞
[1−e2iδ0(k)]eikx dk+

n
∑

j=1

sje
−κjx

• Solve the integral equation

A(x, y)+
∫ ∞

x
A(x, t)F (t+y) dt+F (x+y) = 0

for 0 < x < y

• Obtain the potential as

V (x) = −2
d

dx
A(x, x)
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Computational complexity: Assume no bound

states for simplicity. Data is δ(k) sampled at

K points.

Fourier transform step is O(K logK).

Main computational effort is in solving the in-

tegral equation, which is a second kind Fred-

holm equation on a semi-infinite interval for

each fixed x > 0.

If you want to recover V at N points xj =

j∆x, discretize everything at these N points to

get N N ×N linear systems for total operation

count O(N4).

Below is an O(N2) alternative (joint work with

T. Aktosun)
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There is the following sequence of steps:

1. δ0(k) 7−→ F (x) (O(K logK))

2. F (x) 7−→ f(k) (O(N2 +K logK))

3. f(k) 7−→ g(t) (O(K logK))

4. g(t) 7−→ V (x) (O(N2))
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Step 1

Just a Fourier transform but needs to be done

the right way due to slow (O(1/k)) decay.
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Step 2

Solve

B(t)+F (t)+
∫ ∞

0
F (t+ s)B(s) ds = 0 t > 0

for B(t), t > 0.

This can be done in O(N2) operations, exploit-

ing ’Toeplitz+Hankel’ structure.

Then set

f(k) = 1 +
∫ ∞

0
B(t)eikt dt
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Step 3

Set

g(t) =
2

π

∫ ∞

0
k

(

1

|f(k)|2 − 1

)

sin kt dk

(Then

g(t) =
1

2π

∫ ∞

∞
(M(k) − ik)e−ikt dk

where M(k) is the Weyl function for V .)
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Step 4

The potential

V (x),0 < x < a

is related to

g(t),0 < t < 2a

by the following ’overdetermined’ hyperbolic

boundary value problem.

utt − uxx + V (x)u = 0 0 < x < t < 2a− x

u(0, t) = 0 0 < t < 2a

ux(0, t) = g(t) 0 < t < 2a

u(x, x) = −1

2

∫ x

0
V (s) ds 0 < x < a
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This is one of a collection of problems, in which

the Cauchy data on x = 0

u(0, t) = f(t) ux(0, t) = g(t)

are prescribed, along with the condition on the

characteristic line t = x.

It is known that V is uniquely determined by g,

there is continuous dependence in appropriate

norms, and fast reliable computational meth-

ods are available.

The best of these are O(N2) and rely on a

further transformation to an ’impedance form’

equation

η(x)utt − (η(x)ux)x = 0

(See Bube-Burridge, Santosa-Schwetlick, Corones-

Davison-Krueger etc.)

16



The ℓ 6= 0 case:

There is a similar integral equation formalism,

but there are complications

• The function F (x) is no longer a Fourier

transform

• The kernel of the integral equation is no

longer a function of the sum of the vari-

ables

Computational complexity increases consider-

ably.
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Alternative approach (ℓ = 1 for example):

Theorem of Marchenko states: there exists

V0(r) having phase shift δ1(k) for ℓ = 0.

Furthermore, if

φ′′ = V0φ φ(0) = 0

then

V (r) = 2

(

φ′(r)
φ(r)

)2

− V0(r) −
2

r2

Thus you use the ℓ = 0 technique with data δ1
to obtain V0 and then the above relations to

get V (r) (with O(N) work).

Various relations between V0, V can be proved

and exploited
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