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Scattering data for a potential in the Schrodinger
equation comes in many different forms:

e Phase shift

e S-matrix

e \Weyl function

e Spectral density function

e Left and right reflection coefficients

e Jost function

e Scattering amplitude

e ... more exotic choices



Inverse scattering: Given some form of scat-
tering data, find the corresponding potential.

Many analytical and numerical approaches have
been developed Most well known ones involve
integral equations (Gelfand-Levitan, Marchenko,

D)

But these are not always so well suited to
numerical computation due to high operation
counts, and certain sources of instability

This presentation: Approach via overdeter-
mined hyperbolic boundary value problems, which
adapts in a fairly straightforward way to many
forms of scattering data (and scattering prob-
lems for other differential operators) and has
computational advantages



Let V(x) = V(|z|) be a central potential on R3
which is sufficiently rapidly decaying at oo.

The Schrodinger equation
iup = Au+ V(x)u

has solutions of the form

P(|z|)

—ik?
u=e "y, ¢) p

where 1 = 1)(r) satisfies

£(£—|—1))¢_O O<r<oo

W+ (k% =V (r) —

for some ¢ =0,1,2,...



T here exists a physically acceptable solution v,
unique up to a constant multiple, satisfying

() =00t r—o0

The phase shift comes from examining the be-
havior of this solution as r — oo:

In the absence of a potential we would have,

as r — oo,

() = OV g1 jo(kr) ~ Csin (kr — %Ew)

With the potential present we get instead

b(r) ~ Csin (kr — %ew + )

for some § = §,(k). This is the phase shift.



The inverse problem is

Determine the potential V(x) given phase shift
data d,(k).

Two most common special cases:

e Fixed ¢ € {0,1,2,...}

e Fixed ke R

Older history (uniqueness, existence, construc-
tive methods ...)

Levinson 1949, Bargman 1949, Borg 1949,
Gelfand-Levitan 1951, Marchenko 1952, Jost-

Kohn 1952, Kay 1955, Fadeev 1958, and lots
more



Bound state data

For fixed ¢ we may regard

Y =P(r, k)
defined for »r > 0 and k € C.

For a finite number of special values of k =
ik, kj > 0 we may have ¢ ~ e " as r — oo,
in which case ¢; € L?(0,00) is a bound state
wave function for V.

Denote

5= ([T wora)”

The bound state data is

{Kj, 85 =1



Marchenko’s method (¢ = 0 case)

o Set

mn
F(z) = L/OO (120000 ik gy §° 5 o=ra
21 J—o0 i1 J

e Solve the integral equation

Az, y)+ / Az, ) F(t+y) dt+F(z+y) = 0

forO<zx<uy

e Obtain the potential as

d
V(z) = —Q%A(a:,x)



Computational complexity: Assume no bound
states for simplicity. Data is §(k) sampled at
K points.

Fourier transform step is O(K log K).

Main computational effort is in solving the in-
tegral equation, which is a second kind Fred-
holm equation on a semi-infinite interval for
each fixed x > O.

If you want to recover V at N points z; =
7Ax, discretize everything at these N points to
get N N x N linear systems for total operation
count O(N%).

Below is an O(N?2) alternative (joint work with
T. Aktosun)



There is the following sequence of steps:

1. 6o(k) — F(z) (O(K log K))

2. F(z) — f(k) (O(N?+ Klog K))

3. f(k) — g(t) (O(Klog K))

4. g(t) — V(z) (O(N?))
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Step 1

Just a Fourier transform but needs to be done
the right way due to slow (O(1/k)) decay.
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Step 2

Solve
B(t) + F(t) +/O°° F(t4+s)B(s)ds=0  t>0
for B(t), t > 0.

This can be done in O(NQ) operations, exploit-
ing '"Toeplitz+Hankel’ structure.

Then set

fk) =1+ /OOOB(t)e’ikt dt
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Step 3

Set

> oo 1 |
g(t)=;/0 k<|f(k)|2—1>smktdk

(Then

(1) = % /O:O(M(k) k)Rt gk

where M (k) is the Weyl function for V.)
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Step 4

The potential

V(z),0<zx<a

IS related to

g(t),0 <t <2a

by the following 'overdetermined’ hyperbolic
boundary value problem.

utt — Uge + V(x)u =0 O<z<t<2a—=x
w(0,t) =0 0<t<2a

uz(0,t) = g(t) 0<t<2a

1 rx
u(az,x)z—g/o V(s)ds O<z<a

14



1.8

1.6

14

1.2

0.8

0.6

0.4

0.2

u(O,t):O,uX(O,t =g(t

utt

—uXX+V(x)u:0

u(x,x):l/zfgws)ds

0.2

0.4

0.6

0.8

15




This is one of a collection of problems, in which
the Cauchy data on x =0

u(0,t) = f(t) uz(0,t) = g(t)

are prescribed, along with the condition on the
characteristic line t = x.

It is known that V' is uniquely determined by g,
there is continuous dependence in appropriate
norms, and fast reliable computational meth-
ods are available.

The best of these are O(N?2) and rely on a
further transformation to an 'impedance form’
equation

n(z)ug — (n(x)ug)z =0

(See Bube-Burridge, Santosa-Schwetlick, Corones-
Davison-Krueger etc.)

16



The ¢ %= 0 case:

There is a similar integral equation formalism,
but there are complications

e The function F(xz) is no longer a Fourier
transform

e T he kernel of the integral equation is no
longer a function of the sum of the vari-
ables

Computational complexity increases consider-
ably.
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Alternative approach (¢ = 1 for example):

Theorem of Marchenko states: there exists
Vo(r) having phase shift §1(k) for £ = 0.

Furthermore, if

¢ = Voo ¢(0) =0
then

¢'(r)
¢(r)

2
vy =2(50) v - 5

Thus you use the £ = 0 technique with data 94
to obtain Vy and then the above relations to
get V(r) (with O(N) work).

Various relations between Vp, V' can be proved
and exploited
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