A computational method in inverse scattering for radial potentials using phase shift data

Paul Sacks

Department of Mathematics

Iowa State University

Scattering data for a potential in the Schrödinger equation comes in many different forms:

- Phase shift
- S-matrix
- Weyl function
- Spectral density function
- Left and right reflection coefficients
- Jost function
- Scattering amplitude
- ... more exotic choices

Inverse scattering: Given some form of scattering data, find the corresponding potential.

Many analytical and numerical approaches have been developed Most well known ones involve integral equations (Gelfand-Levitan, Marchenko, ...)

But these are not always so well suited to numerical computation due to high operation counts, and certain sources of instability

This presentation: Approach via overdetermined hyperbolic boundary value problems, which adapts in a fairly straightforward way to many forms of scattering data (and scattering problems for other differential operators) and has computational advantages

Let $V(x)=V(|x|)$ be a central potential on \mathbf{R}^{3} which is sufficiently rapidly decaying at ∞.

The Schrödinger equation

$$
i u_{t}=\Delta u+V(x) u
$$

has solutions of the form

$$
u=e^{-i k^{2} t} Y_{\ell}^{m}(\theta, \phi) \frac{\psi(|x|)}{|x|}
$$

where $\psi=\psi(r)$ satisfies
$\psi^{\prime \prime}+\left(k^{2}-V(r)-\frac{\ell(\ell+1)}{r^{2}}\right) \psi=0 \quad 0<r<\infty$ for some $\ell=0,1,2, \ldots$

There exists a physically acceptable solution ψ, unique up to a constant multiple, satisfying

$$
\psi(r)=O\left(r^{\ell+1}\right) \quad r \rightarrow 0
$$

The phase shift comes from examining the behavior of this solution as $r \rightarrow \infty$:

In the absence of a potential we would have, as $r \rightarrow \infty$,

$$
\psi(r)=C \sqrt{r} J_{\ell+1 / 2}(k r) \approx C \sin \left(k r-\frac{1}{2} \ell \pi\right)
$$

With the potential present we get instead

$$
\psi(r) \approx C \sin \left(k r-\frac{1}{2} \ell \pi+\delta\right)
$$

for some $\delta=\delta_{\ell}(k)$. This is the phase shift.

The inverse problem is

Determine the potential $V(x)$ given phase shift data $\delta_{\ell}(k)$.

Two most common special cases:

- Fixed $\ell \in\{0,1,2, \ldots\}$
- Fixed $k \in \mathbb{R}$

Older history (uniqueness, existence, constructive methods ...)

Levinson 1949, Bargman 1949, Borg 1949, Gelfand-Levitan 1951, Marchenko 1952, JostKohn 1952, Kay 1955, Fadeev 1958, and lots more

Bound state data

For fixed ℓ we may regard

$$
\psi=\psi(r, k)
$$

defined for $r \geq 0$ and $k \in \mathbb{C}$.

For a finite number of special values of $k=$ $i \kappa_{j}, \kappa_{j}>0$ we may have $\psi \sim e^{-\kappa_{j} r}$ as $r \rightarrow \infty$, in which case $\psi_{j} \in L^{2}(0, \infty)$ is a bound state wave function for V.

Denote

$$
s_{j}=\left(\int_{0}^{\infty}\left|\psi_{j}(r)\right|^{2} d r\right)^{-1}
$$

The bound state data is

$$
\left\{\kappa_{j}, s_{j}\right\}_{j=1}^{n}
$$

Marchenko's method ($\ell=0$ case)

- Set

$$
F(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[1-e^{2 i \delta_{0}(k)}\right] e^{i k x} d k+\sum_{j=1}^{n} s_{j} e^{-\kappa_{j} x}
$$

- Solve the integral equation
$A(x, y)+\int_{x}^{\infty} A(x, t) F(t+y) d t+F(x+y)=0$ for $0<x<y$
- Obtain the potential as

$$
V(x)=-2 \frac{d}{d x} A(x, x)
$$

Computational complexity: Assume no bound states for simplicity. Data is $\delta(k)$ sampled at K points.

Fourier transform step is $O(K \log K)$.

Main computational effort is in solving the integral equation, which is a second kind Fredholm equation on a semi-infinite interval for each fixed $x>0$.

If you want to recover V at N points $x_{j}=$ $j \Delta x$, discretize everything at these N points to get $N N \times N$ linear systems for total operation count $O\left(N^{4}\right)$.

Below is an $O\left(N^{2}\right)$ alternative (joint work with T. Aktosun)

There is the following sequence of steps:

1. $\delta_{0}(k) \longmapsto F(x)(O(K \log K))$
2. $F(x) \longmapsto f(k)\left(O\left(N^{2}+K \log K\right)\right)$
3. $f(k) \longmapsto g(t)(O(K \log K))$
4. $g(t) \longmapsto V(x)\left(O\left(N^{2}\right)\right)$

Step 1

Just a Fourier transform but needs to be done the right way due to slow $(O(1 / k))$ decay.

Step 2

Solve
$B(t)+F(t)+\int_{0}^{\infty} F(t+s) B(s) d s=0 \quad t>0$ for $B(t), t>0$.

This can be done in $O\left(N^{2}\right)$ operations, exploiting 'Toeplitz+Hankel' structure.

Then set

$$
f(k)=1+\int_{0}^{\infty} B(t) e^{i k t} d t
$$

Step 3

Set

$$
g(t)=\frac{2}{\pi} \int_{0}^{\infty} k\left(\frac{1}{|f(k)|^{2}}-1\right) \sin k t d k
$$

(Then

$$
g(t)=\frac{1}{2 \pi} \int_{\infty}^{\infty}(M(k)-i k) e^{-i k t} d k
$$

where $M(k)$ is the Weyl function for V.)

Step 4

The potential

$$
V(x), 0<x<a
$$

is related to

$$
g(t), 0<t<2 a
$$

by the following 'overdetermined' hyperbolic boundary value problem.

$$
\begin{gathered}
u_{t t}-u_{x x}+V(x) u=0 \quad 0<x<t<2 a-x \\
u(0, t)=0 \quad 0<t<2 a \\
u_{x}(0, t)=g(t) \quad 0<t<2 a \\
u(x, x)=-\frac{1}{2} \int_{0}^{x} V(s) d s \quad 0<x<a
\end{gathered}
$$

This is one of a collection of problems, in which the Cauchy data on $x=0$

$$
u(0, t)=f(t) \quad u_{x}(0, t)=g(t)
$$

are prescribed, along with the condition on the characteristic line $t=x$.

It is known that V is uniquely determined by g, there is continuous dependence in appropriate norms, and fast reliable computational methods are available.

The best of these are $O\left(N^{2}\right)$ and rely on a further transformation to an 'impedance form' equation

$$
\eta(x) u_{t t}-\left(\eta(x) u_{x}\right)_{x}=0
$$

(See Bube-Burridge, Santosa-Schwetlick, Corones-Davison-Krueger etc.)

The $\ell \neq 0$ case:

There is a similar integral equation formalism, but there are complications

- The function $F(x)$ is no longer a Fourier transform
- The kernel of the integral equation is no longer a function of the sum of the variables

Computational complexity increases considerably.

Alternative approach ($\ell=1$ for example):

Theorem of Marchenko states: there exists $V_{0}(r)$ having phase shift $\delta_{1}(k)$ for $\ell=0$.

Furthermore, if

$$
\phi^{\prime \prime}=V_{0} \phi \quad \phi(0)=0
$$

then

$$
V(r)=2\left(\frac{\phi^{\prime}(r)}{\phi(r)}\right)^{2}-V_{0}(r)-\frac{2}{r^{2}}
$$

Thus you use the $\ell=0$ technique with data δ_{1} to obtain V_{0} and then the above relations to get $V(r)$ (with $O(N)$ work).

Various relations between V_{0}, V can be proved and exploited

