

Paul Sacks ^a Jaemin Shin ^b

Department of Mathematics, Iowa State University, Ames, Iowa, USA

^ae-mail address: psacks@iastate.edu ^be-mail address: jmshin@iastate.edu

1. Inverse sound-soft obstacle scattering problems

$$\begin{cases} u = u^{i} + u^{s}, \ u^{i} = e^{ikx \cdot d} \\ \Delta u + k^{2}u = 0, & \text{in } \mathbb{R}^{2} \setminus \overline{\Omega} \\ u = 0, & \text{on } \partial\Omega \\ \lim_{|x| \to \infty} \sqrt{|x|} (\frac{\partial u^{s}}{\partial |x|} - iku^{s}) = 0 \\ u_{\infty}(\widehat{x}, d, k) = \lim_{|x| \to \infty} u^{s}(x, d) \sqrt{|x|} e^{-ik|x|} \end{cases}$$

• Inverse obstacle scattering problem:

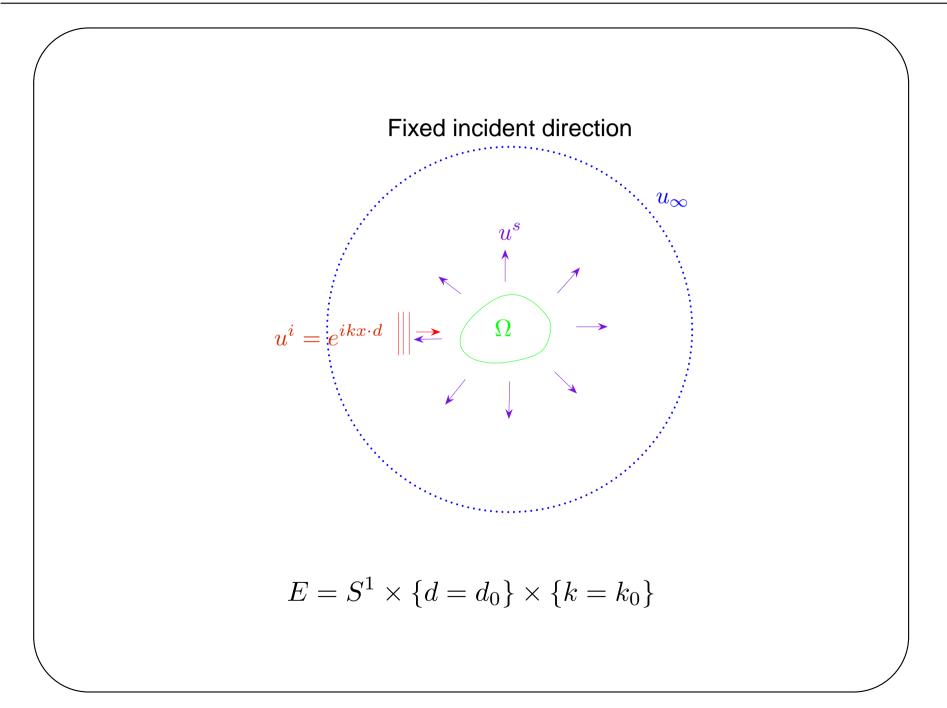
Recover $\partial\Omega$ from $u_{\infty}(\widehat{x}, d, k)$ in a certain set $E \subset S^1 \times S^1 \times \mathbb{R}_+$,

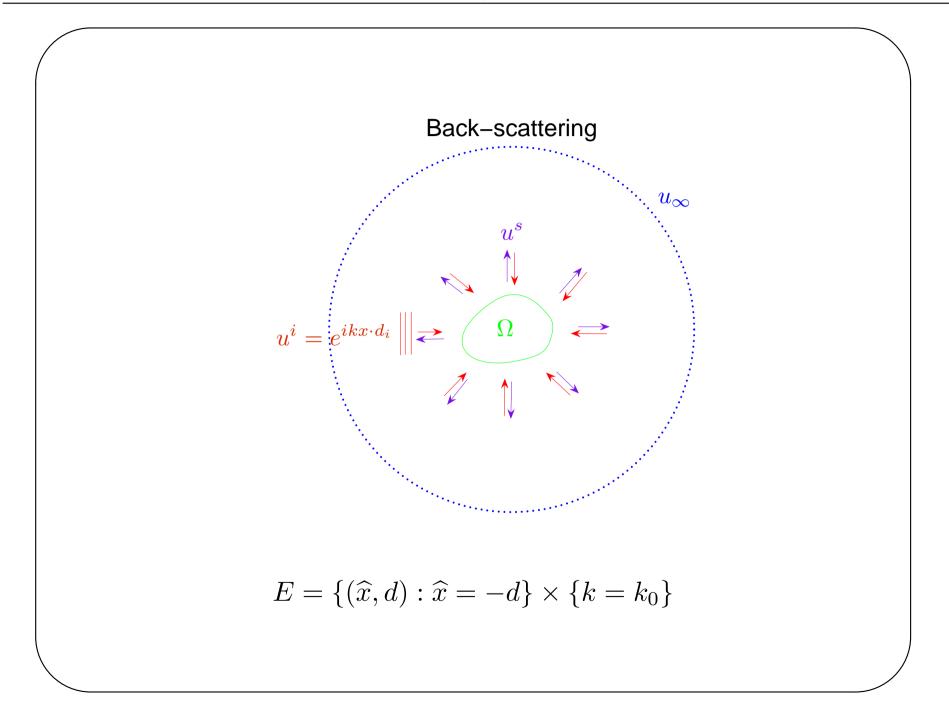
1

i.e. solve the nonlinear and ill posed equation

$$F(\partial\Omega) = u_{\infty}$$

for the unknown boundary $\partial \Omega$





2. Previous results

• $E = S^1 \times S^1 \times \{k = k_0\}$

► Uniqueness: Schiffer^[8] (1967)

•
$$E = S^1 \times \{d = d_0\} \times \{k_i : 1 \le i \le n\}$$

► Uniqueness: Colton & Sleeman^[2] (1983)

► Linearization of F: Kirsch^[4] (1993), Potthast^[10] (1994)

► Numerical implementation: Kirsch^[5] (1993), Kress & Rundell^[6] (1994)

•
$$E = \{(\widehat{x}, d) : \widehat{x} = -d\} \times K$$

► Uniqueness: Majda^[9](1974) with assuming that Ω is convex and K has a limit point.

► Linearization

► Uniqueness of linearized problem: Hähner and Kress^[3] (2000) showed uniqueness of linearized problem with $K = \{k : 0 < k < 1\}$

3. Modulus data

• Overdetermined problem

data($u_{\infty}(\widehat{x}, d_0, k_0)$): complex valued function \rightarrow solution ($\partial \Omega(r(t))$): real valued function

translation invariance

 $F(\partial \Omega) = u_{\infty}(\widehat{x}, d, k)$ $F(\partial \Omega + h) = e^{ikh \cdot (d - \widehat{x})} u_{\infty}(\widehat{x}, d, k)$ $|F(\partial \Omega)| = |F(\partial \Omega + h)|$

• We don't have analogue for Schiffer^[8]'s uniqueness result even with the translation invariance taken into account.

• Majda^[9](1976): If Ω is a smooth strictly convex, and $\hat{x} \neq d$, then for sufficiently large k,

$$|u_{\infty}(\widehat{x},d,k) - \frac{e^{iky^+ \cdot (\widehat{x}-d)}}{\sqrt{\kappa(y^+)}} \frac{\langle \frac{d-\widehat{x}}{|d-\widehat{x}|}, \widehat{x} \rangle}{\sqrt{|d-\widehat{x}|}}| \le C\frac{1}{k}$$

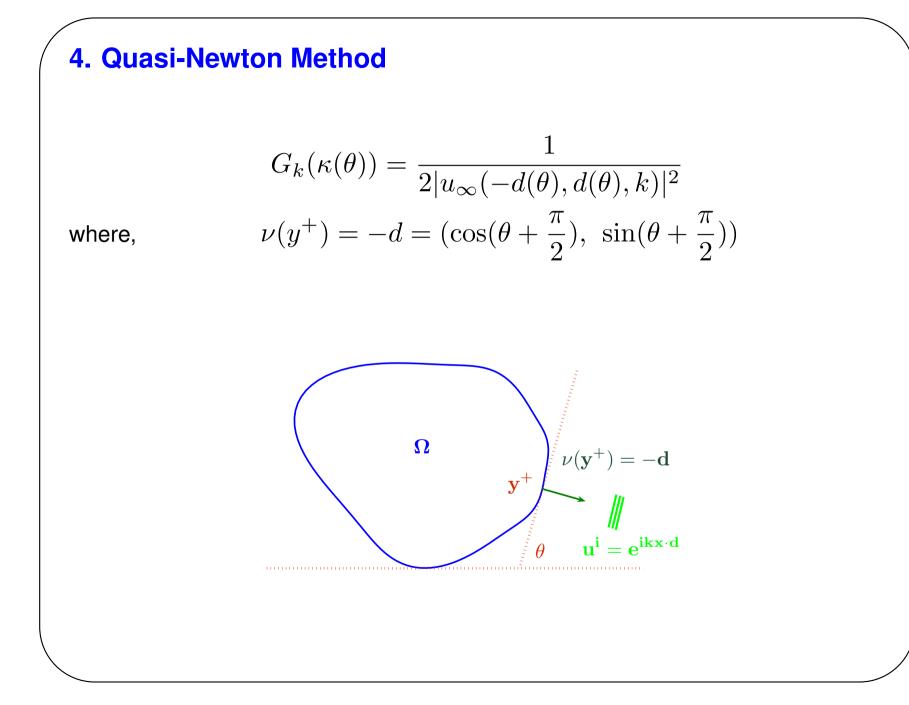
where $\nu(y^+) = \frac{d-\widehat{x}}{|d-\widehat{x}|}$ for the Gauss map ν , and $\kappa(y^+)$ is the curvature at y^+ .

• Kress, Rundell^[7] (1997)

$$D(|F(\partial\Omega)|^2)q = 2 \operatorname{Re} \overline{F(\partial\Omega)}DF(\partial\Omega)q$$

$$r_{n+1} = r_n - A_n[|F(r_n)|^2 - |u_{\infty}|^2]$$

$$\{\sin\varphi, \cos\varphi\} \subset \ker D(|F(\partial B(0,1))|^2)$$



Majda result or the Kirchhoff approximation and the stationary phase method give

$$\lim_{k \to \infty} G_k(\kappa(\theta)) = \kappa(\theta)$$

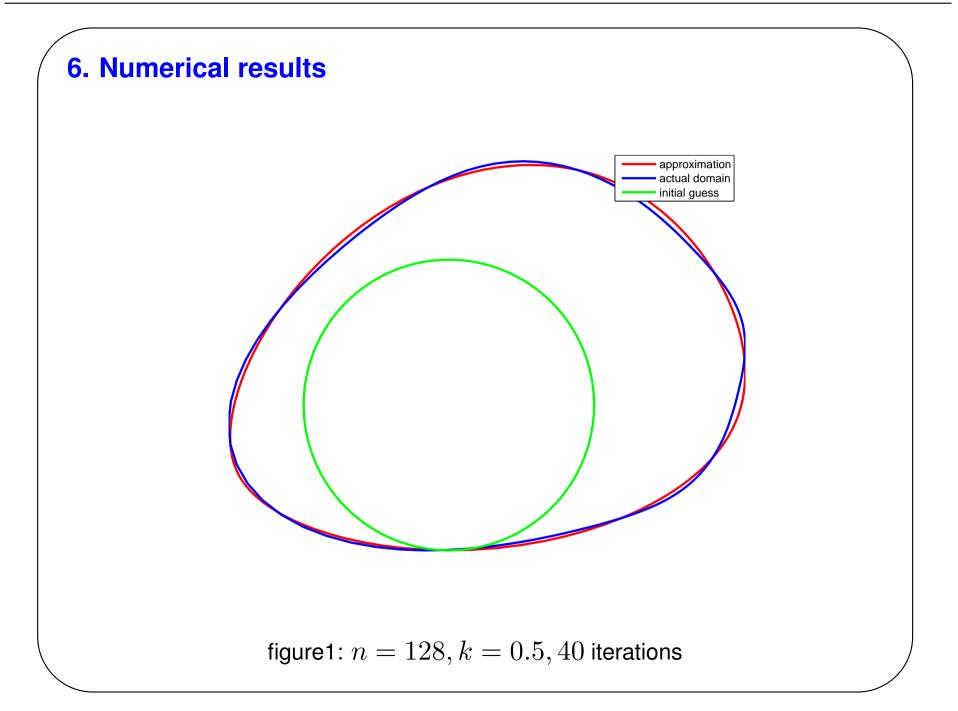
$$\kappa_{n+1} = \kappa_n - A_n [G_k(\kappa_n) - \frac{1}{2|u_{\infty}|^2}]$$

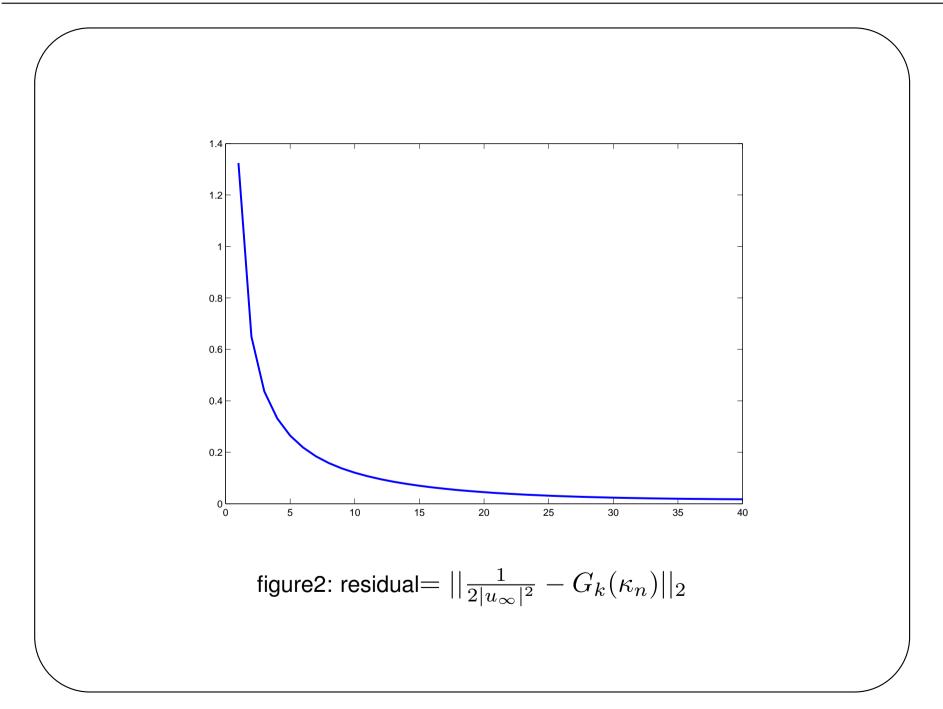
Newton method; $A_n = DG_k(\kappa_n)^{-1}$ Kress-Rundell^[7]; A_n = regularization methods involving $DG_k(1)$ Our work; $A_n = DG_{\infty}(\kappa_n)^{-1} = I$

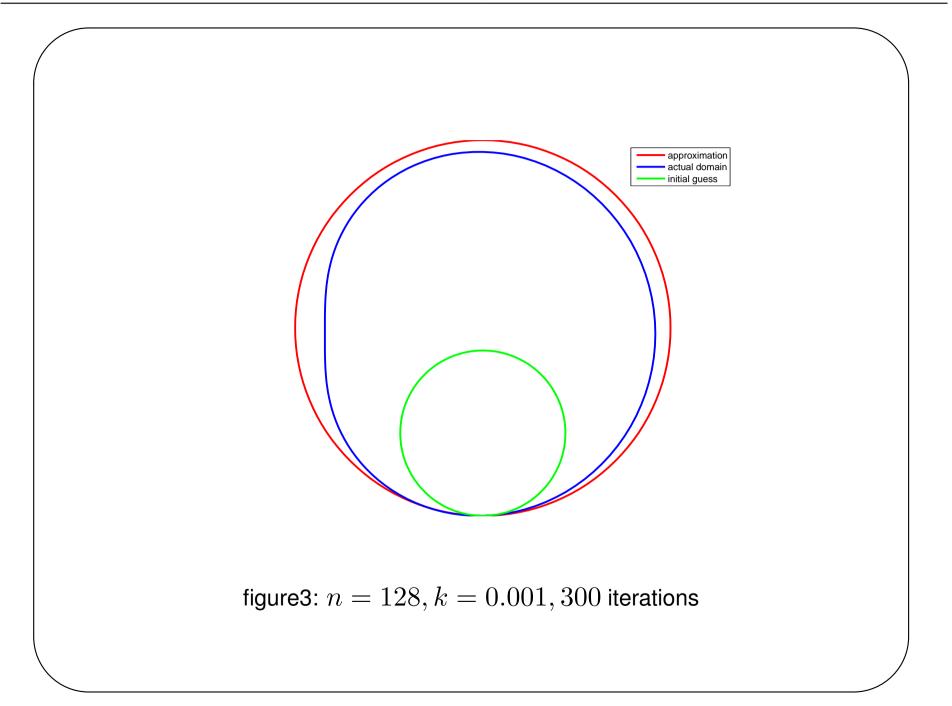
$$\kappa_{n+1} = \kappa_n + \frac{1}{2|u_{\infty}|^2} - G_k(\kappa_n)$$

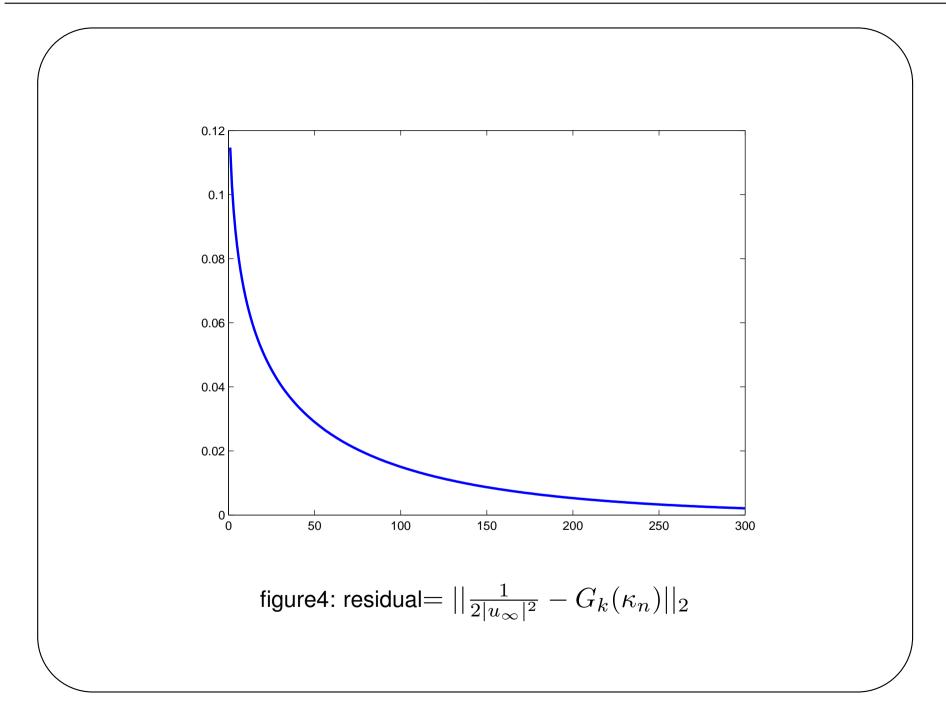
5. Recover the domain from the curvature^[1]

$$v(\theta) = \frac{1}{\kappa(\theta)}$$
$$x_1(\theta) = \int_0^\theta \frac{1}{\kappa(\sigma)} \cos \sigma d\sigma$$
$$x_2(\theta) = \int_0^\theta \frac{1}{\kappa(\sigma)} \sin \sigma d\sigma$$









7. Convergence and uniqueness

• Define a operator

$$\phi(\kappa) = \kappa - G_k(\kappa) + \frac{1}{2|u_{\infty}|^2}$$

We can have uniqueness as well as convergence of the new algorithm if ϕ is a contraction mapping on a subset A of suitable function space H.

$$||D\phi(\kappa)|| = ||I - DG_k(\kappa)|| \le C < 1$$
 for all $\kappa \in A$ and $k \in K$

• Let $A = \{ \text{ circle with radius } > r_0 \}$, and for $k \in (k_0, \infty)$ with $k_0 \cdot r_0 > M$

$$||D\phi(\kappa)|| < 1$$

8. Current works and plans for the future

• Show the convergence of the algorithm, or determine a set A in which the mapping ϕ has the contraction property.

• Adopt the algorithm to the nonconvex body;

We can recover the convex part with high frequency data.

• The non-zero off set problem. i.e.

$$E = \{ (\hat{x}, d) : \hat{x} = -d + \alpha, \alpha \in \Sigma \} \times \{ k = k_0 \}$$

for some set $\boldsymbol{\Sigma}$

• Consider real part of u_{∞} as a data instead of $|u_{\infty}|$

References

- [1] Chen. Determine convex body in \mathbb{R}^2 by its curvature, Unpublished note
- [2] Colton, Sleeman. Uniqueness theorems for the inverse problem of acoustic scattering. *IMA J. Appl. Math* 31, 253–259, (1983)
- [3] Hähner, Kress. Uniqueness for a linearized, inverse obstacle problem using backscattering data. In *Proceedings of the Fifth International Conference on Mathematical and Numerical Aspects of Wave Propagation (Bermudez et al, eds)*,489–493 SIAM Publications, Philadelphia, (2000)
- [4] Kirsch. The domain derivative and two applications in inverse scattering theory. *Inverse problem 9*, 81–96 (1993)
- [5] Kirsch. Numerical algorithms in inverse scattering theory. Ordinary and partial differential equations, Vol. IV (Dundee), 93–111,(1992) Pitman Res. Notes Math. Ser., 289, Longman Sci. Tech., Harlow (1993)

- [6] Kress, Rundell. A quasi-newton method in inverse obstacle scattering. *Inverse problem 10*, 1145–1157 (1994)
- [7] Kress, Rundell. Inverse Obstacle Scattering with modulus of the far field pattern as data. *Inverse Problems in Medical Imaging and Nondestructive Testing (Oberwolfach, 1996)*, Vienna: Springer,75-92 (1997)
- [8] Lax, Phillips. Scattering Theory, Academic Press, (1989)
- [9] Majda. High frequency asymptotics for the scattering matrix and the inverse problem of acoustical scattering. *Comm. pure and applied math. vol 24*, 261-291 (1976)
- [10] Potthast. Fréchet differentiability of boundary integral operaters in inverse acoustic scattering. *Inverse problem 10*, 431–447 (1994)