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1. Inverse sound-soft obstacle scattering problems





u = ui + us, ui = eikx·d

∆u + k2u = 0, in R2 \ Ω

u = 0, on ∂Ω

lim|x|→∞
√
|x|( ∂us

∂|x| − ikus) = 0

u∞(x̂, d, k) = lim
|x|→∞

us(x, d)
√
|x|e−ik|x|

• Inverse obstacle scattering problem:

Recover ∂Ω from u∞(x̂, d, k) in a certain set E ⊂ S1 × S1 × R+,

i.e. solve the nonlinear and ill posed equation

F (∂Ω) = u∞

for the unknown boundary ∂Ω
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Fixed incident direction

Ω
u

i
= e

ikx·d

u
s

u∞

E = S1 × {d = d0} × {k = k0}
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Back−scattering

Ω
u

i
= e

ikx·di

u
s

u∞

E = {(x̂, d) : x̂ = −d} × {k = k0}
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2. Previous results

• E = S1 × S1 × {k = k0}
I Uniqueness: Schiffer[8] (1967)

• E = S1 × {d = d0} × {ki : 1 ≤ i ≤ n}
I Uniqueness: Colton & Sleeman[2] (1983)

I Linearization of F : Kirsch[4] (1993), Potthast[10] (1994)

I Numerical implementation: Kirsch[5] (1993), Kress & Rundell[6] (1994)

• E = {(x̂, d) : x̂ = −d} ×K

I Uniqueness: Majda[9](1974) with assuming that Ω is convex and K has a

limit point.

I Linearization

I Uniqueness of linearized problem: Hähner and Kress[3] (2000) showed

uniqueness of linearized problem with K = {k : 0 < k < 1}
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3. Modulus data

• Overdetermined problem

data(u∞(x̂, d0, k0)): complex valued function

→ solution (∂Ω(r(t))): real valued function

• translation invariance

F (∂Ω) = u∞(x̂, d, k)

F (∂Ω + h) = eikh·(d−bx)u∞(x̂, d, k)

|F (∂Ω)| = |F (∂Ω + h)|

• We don’t have analogue for Schiffer[8]’s uniqueness result even with the

translation invariance taken into account.

Department of Mathematics, Iowa State University, Ames, IA 50011
Page 6



Inverse obstacle back-scattering problem with modulus data

'

&

$

%

• Majda[9](1976): If Ω is a smooth strictly convex, and x̂ 6= d, then for sufficiently

large k,

|u∞(x̂, d, k)− eiky+·(bx−d)

√
κ(y+)

< d−bx
|d−bx| , x̂ >

√
|d− x̂| | ≤ C

1
k

where ν(y+) = d−bx
|d−bx| for the Gauss map ν, and κ(y+) is the curvature at y+.

• Kress, Rundell[7] (1997)

D(|F (∂Ω)|2)q = 2 Re F (∂Ω)DF (∂Ω)q

rn+1 = rn −An[|F (rn)|2 − |u∞|2]
{sin ϕ, cos ϕ} ⊂ kerD(|F (∂B(0, 1))|2)
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4. Quasi-Newton Method

Gk(κ(θ)) =
1

2|u∞(−d(θ), d(θ), k)|2
where, ν(y+) = −d = (cos(θ +

π

2
), sin(θ +

π

2
))

ν(y+) = −d

y+

ui = eikx·d
θ

Ω
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Majda result or the Kirchhoff approximation and the stationary phase method give

lim
k→∞

Gk(κ(θ)) = κ(θ)

κn+1 = κn −An[Gk(κn)− 1
2|u∞|2 ]





Newton method; An = DGk(κn)−1

Kress-Rundell[7]; An = regularization methods involving DGk(1)

Our work; An = DG∞(κn)−1 = I

κn+1 = κn +
1

2|u∞|2 −Gk(κn)
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5. Recover the domain from the curvature[1]

v(θ) =
1

κ(θ)




x1(θ) =
∫ θ

0
1

κ(σ) cos σdσ

x2(θ) =
∫ θ

0
1

κ(σ) sin σdσ
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6. Numerical results

approximation
actual domain
initial guess

figure1: n = 128, k = 0.5, 40 iterations
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figure2: residual= || 1
2|u∞|2 −Gk(κn)||2
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approximation
actual domain
initial guess

figure3: n = 128, k = 0.001, 300 iterations
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figure4: residual= || 1
2|u∞|2 −Gk(κn)||2
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7. Convergence and uniqueness

• Define a operator

φ(κ) = κ−Gk(κ) +
1

2|u∞|2

We can have uniqueness as well as convergence of the new algorithm if φ is a

contraction mapping on a subset A of suitable function space H .

||Dφ(κ)|| = ||I −DGk(κ)|| ≤ C < 1 for all κ ∈ A and k ∈ K

• Let A = { circle with radius > r0}, and for k ∈ (k0,∞) with k0 · r0 > M

||Dφ(κ)|| < 1
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8. Current works and plans for the future

• Show the convergence of the algorithm, or determine a set A in which the

mapping φ has the contraction property.

• Adopt the algorithm to the nonconvex body;

We can recover the convex part with high frequency data.

• The non-zero off set problem. i.e.

E = {(x̂, d) : x̂ = −d + α, α ∈ Σ} × {k = k0}

for some set Σ

• Consider real part of u∞ as a data instead of |u∞|
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