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ABSTRACT
  
 In the present work a hybridization of the 
Levenberg-Marquardt method (LM) with Artificial 
Neural Networks (ANN) is used for the solution of the 
inverse radiative transfer problem in a two-layer 
medium. The ANNs provides good initial guesses for 
the LM method. The absorption and scattering 
coefficients of both layers are estimated using external 
and internal detectors. Using only external detectors 
are obtained non unique solutions.  
 

1. NOMENCLATURE 
 

jf   = intensity of the external radiation sources, 

21 orj =  

( ).f  = activation function 

F
�

  = vector of residues 
( ).g   = activation function 

I   = intensity of the radiation 
J   = Jacobian matrix  

iak   = absorption coefficient, 21 ori =  

iL   = thickness of the layers, 21 ori =  

kl   = difference between the estimates kt  and the 

exact values kexactZ  
N   = total number of experimental data  

HN  = number of neurons in the hidden layer  

uN   = number of unknowns  

jp   = excitation to neuron, j , HNj ,,2,1 �=  

Q   = cost of function 

r   = random number in the range [ ]1,1−  

ks   = excitation to neuron, k , uNk ,,2,1 �=  

kt   = estimates for the unknowns obtained with 

the ANN, uNk ,,2,1 �=  
x   = spatial coordinate 

lx   = entries of the neural network, Nl ,,2,1 �=  
Y   = experimental (simulated) values for the 
radiation intensity   
Z
�

  = vector of unknowns 
 
Greek letters 

iβ   = total extinction coefficient, 21 ori =  

Z
�

∆   = corrections of the unknowns 
ε   = tolerance for the iterative procedure sttoping 
criterion 

( )nη  = learning rates, 21 orn =  
λ   = damping parameter 
µ   = cosine of the polar angle 

lρ   = diffuse reflectivities, 4,,2,1 �=l  
σ   = standard deviation of measurement errors 

isσ   = scattering coefficient, 21 ori =  

ω   = weights of the neural network connections  
 

2. INTRODUCTION 
 
 The analysis of radiative transfer phenomena in 
multi-layer or heterogeneous participating media has 
attracted the attention of many researchers due to the 
relevant applications in different areas such as fire risk 
assessment [1], regional and global climate models [2], 
and Earth remote sensing [3], among several others. 
 In order to reduce the computation time for the 
solution of either the direct or inverse radiative transfer 
problems, artificial neural networks have been used [4-
8]. 



 Silva Neto and Soeiro [9] and Soeiro et al. [10, 11] 
have used Artificial Neural Networks (ANN) and 
hybrid methods for the estimation of radiative 
properties in one-dimensional homogeneous or 
heterogeneous participating media. 
 In the present work the formulation and solution of 
inverse radiative transfer problems with ANNs is 
presented for the estimation of the absorption and 
scattering coefficients in a two-layer media. 
 The patterns used in the neural network training 
were generated with the solution of the linear 
Boltzmann equation, which is used to model the direct 
radiative transfer problem. 
 A multi-layer perceptron neural network, with one 
hidden layer, is constructed for the solution of the 
inverse radiative transfer problem. In the input layer a 
total of N  experimental data, with 20=N , is 
considered, and in the output layer there are four 
nodes, one for each unknown, i.e. the absorption and 
scattering coefficients of the two-layers.  
 As real experimental data was not available, we 
considered synthetic (simulated) data on the emerging 
radiation intensity with polar angle dependence, which 
was generated by adding a computationally generated 
pseudo-random noise to the calculated values obtained 
with the direct problem solution using the exact values 
of the parameters which are considered unknown in the 
inverse problem. 
 First only external detectors were considered, but 
the problem solution seems to be non-unique. Internal 
detectors were then also taken into account and the 
Artificial Neural Networks yielded good solutions for 
the inverse radiative transfer problem.  
 Refractive index effects [12] are not taken into 
account in the present work.  

  

3. MATHEMATICAL FORMULATION AND 
SOLUTION OF THE DIRECT PROBLEM 

 
Consider the problem of radiative transfer in a 

composite medium with two plane-parallel, 
isotropically scattering, gray layers, with diffusely 
reflecting boundary surfaces and interface, as shown in 
Fig. 1. The medium is subjected to external irradiation 
on both sides with intensity ( )µ1f  at 0=x  and ( )µ2f  

at 21 LLx += , where µ  is the cosine of the polar 

angle, and 1L  and 2L  represent the thickness of layers 
1 and 2, respectively. 

 
The mathematical formulation of the direct steady-

state radiative transfer problem with azymuthal 
symmetry is given by 
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where ( )µ,xI i   represents the radiation intensity in 

layer i , with 21ori = , iβ , is the total extinction 
coefficient 
 

ii sai k σβ +=                            (3) 

iak  is the absorption coefficient, 
isσ  is the scattering 

coefficient and jρ  are the diffuse reflectivities, with 

4,,1 �=j . 
When the geometry, the radiative properties, and 

the boundary conditions are known, problem (1-2) may 
be solved yielding the values of the radiation intensities 

( )µ,1 xI , for 10 Lx ≤≤  and 11 ≤≤− µ , and ( )µ,2 xI , 

for 211 LLxL +≤≤   and 11 ≤≤− µ . This is the direct 
problem. 
 For the solution of the direct problem we use in the 
present work a combination of Chandrasekhar’s 
discrete ordinates method [13] with the finite 
difference method [14].  
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Fig. 1. Two-layer semitransparent medium. 



4. MATHEMATICAL FORMULATION AND 
SOLUTION OF THE INVERSE PROBLEM 
WITH ARTIFICIAL NEURAL NETWORKS 
(ANN) 

 
We are interested in obtaining estimates for the 

vector of unknowns  
 

{ }
2211

,,, asas kkZ σσ=
�

                 (4) 

 
using measured data on the emerging radiation 
intensity acquired at 0=x  and 21 LLx += , iY , with 

Ni ,,2,1 �= , being N  the total number of 
experimental data. 

As real experimental data was not available, we 
generated sets of synthetic experimental data with 

 
( ) iexactcalci rZIIY

ii
σ+==

�

exp            (5) 

 
where 

icalcI  represents the calculated values of the 

radiation intensity using the exact values of the 
radiative properties, exactZ

�
, which in a real application 

is not available and we want to determine with the 
inverse problem solution, σ  simulates the standard 
deviation of the measurement errors, and ir  is a 
pseudo-random number generated in the range [-1, 1]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In order to solve the inverse radiative transfer 
problem we use here a multi-layer perceptron (MLP) 
neural network [15,16]. In Fig. 2 is given a 
representation of the MLP with the input and output 
layers, and one hidden layer for the solution of the 
inverse radiative transfer problem of determining the 
vector of unknowns Z

�
, given by Eq. (4), from the 

knowledge of the radiation intensities, NiYi ,...,2,1, = . 

By providing Y
�

 at the input layer we expect that the 
ANN will provide at the output layer an estimate for 
Z
�

. 
Each neuron j , with HNj ,,2,1 �= , in the 

hidden layer performs a linear combination of the input 
values provided at the input layer 
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where NiNjw Hji ,...,2,1,,...,2,1,)1( ==  are the 

weights of the connections between the nodes of the 
input layer and the neurons of the hidden layer, N  is 
the number of nodes in the input layer, and HN  is the 
number of neurons in the hidden layer. 
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Figure 2 – Multi-layer perceptron network with one hidden layer for the inverse 
radiative transfer problem. 



The weighted sum jp  given by Eq. (6) is viewed 

as an excitation to neuron j  of the hidden layer, which 
provides in response 

 
( ) Hjj Njpfq ,...,2,1, ==              (7) 

 
where ( ).f  is an activation function. Various choices 
for the function ( ).f  are possible. 

Each neuron k , uNk ,...,2,1=  of the output layer 

performs a linear combination of the response jq , 

HNj ,...,2,1= , of the neurons of the hidden layer 
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where )2(

kjw , uNk ,...,2,1= , HNj ,...,2,1= , are the 

weights of the connections between the neurons of the 
hidden layer and the neurons of the output layer, and 

uN  is the number of neurons in the output layer, which 
coincides with the number of unknowns of the inverse 
problem. Here we have 4=uN  (see Eq. (4)). 

The weighted sum ks  given by Eq. (8) is viewed 
as an excitation to neuron k  of the output layer, which 
provides in response 
 

( )kk sgt = ,        uNk ,...,2,1=                  (9) 
 

where ( ).g  is an activation function. Various choices 
for the function ( ).g  are possible. 

Combining Eqs. (6-9) we get 
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Considering available the experimental data 
NiYi ,...,2,1, = , we observe in Eq. (10) that kt , 

uNk ,...,2,1= , are estimates for the unknowns kZ , 

uNk ,...,2,1= , obtained by the ANN. But before we can 
use Eq. (10) we must determine the weight parameters 

)1(w  and )2(w . 

The determination of the weights )1(w  and )2(w  
is accomplished by presenting a set of patterns (known 
input exactY

�
 and outputs exactZ

�
) and calculating the 

weights that provides the best match between the 
calculated values t

�
 and the target values exactZ

�
. The 

patterns used in this supervised training stage of the 

ANN were generated by calculating the values exactY
�

 

from known sets exactZ
�

 with the discrete ordinates and 
finite difference solution mentioned in the previous 
section. 

For the determination of )1(w  and )2(w  we used 
the back propagation algorithm. We start with an initial 
guess for the weights, nw )1( , nw )2( , with 0=n , and 
the set of inputs Y

�
 is passed forward through the 

network yielding trial outputs 0=nt
�

 which are 

compared with the desired outputs exactZ
�

 leading to 
the errors, 

 
n
kexactk

n
k tZe −= ,  uNk ,...,2,1=              (11) 

 
The weights are then adjusted using the 

information provided by the output error [15]  
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( )1η  and ( )2η  are the learning rates, which can assume 

different values for the weights between input-hidden 
layers (1) and hidden-output layers (2). 

The forward and backward sweeps procedure is 
continued until a convergence criterion related to errors  

ke , uNk ,...,2,1= , is satisfied. 
The presentation of a full set of patterns is 

denominated epoch. After one epoch is completed the 
set of patterns is presented again, in a different 
(random) order. After a number of epochs, once the 
comparison error is reduced to an acceptable level over 
the whole training set, the training phase ends and the 
ANN is established. Therefore, in our inverse radiative 
transfer problem the unknowns Z

�
 (output) can be 

determined using the experimental data Y
�

 as the inputs 
to the ANN (see Fig. 2) and the simple forward sweep 
described by Eq. (10). 

 
 
 
 
 



5. MATHEMATICAL FORMULATION AND 
SOLUTION OF THE INVERSE PROBLEM 
WITH THE LEVENBERG-MARQUARDT 
METHOD (LM) 

 
As the number of experimental data available is 

larger than the number of unknown parameters to be 
determined, the inverse problem may be formulated 
implicitly as an optimization problem, in which we 
seek to minimize the squared residues cost function  
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where the elements of the vector of residues given by 
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From the critical point equation 
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one obtains the system of non-linear equations 
 

0=FJ T �
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where the elements of the Jacobian matrix are given by 
 

u
j

calc
ij NjandNi

Z

I
J i ,,2,1,,2,1, �� ==

∂
∂

=  (17) 

 
Writing a Taylor’s expansion and keeping only 

the terms up to the first order  
 

( ) ( ) nnnn ZJZFZF
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where  
 

nnn ZZZ
���
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and introducing Eq. (18) in Eq. (16) results  
 

nTnnT FJZJJ
nn ��
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Adding a damping factor nλ  to the diagonal 

terms of the matrix JJ T  one gets the well known 
Levenberg-Marquardt method  

 
nTnnnT FJZJJ
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where ℑ  represents the identity matrix. 

An iterative procedure is then constructed by 
starting with an initial guess 0Z

�
 and then calculating 

nZ
�

∆  and 1+nZ
�

 with Eqs. (21) and (19) respectively, 
with �,2,1,0=n  until a prescribed stopping criterion 
is satisfied, such as  

 

ε<
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n
i

n
i

Z

Z
                                      (22) 

 
where ε  represents a small tolerance, say 510− . 
 

6. RESULTS AND DISCUSSION 

 
 In Table 1 we present the results obtained with the 
LM method starting with the initial guess: 

10.0
1

=sσ 1−cm , 8.0
1

=ak 1−cm , 10.0
2

=sσ 1−cm  

and 8.0
2

=ak 1−cm  for the particular case with the 

exact values for the unknowns 45.0
1

=sσ 1−cm , 

05.0
1

=ak 1−cm , 45.0
2

=sσ 1−cm  and 05.0
2

=ak  
1−cm  (maximum noise in the experimental data = 8% - 

σ = 0.002 in Eq. (5)) . Note that these LM does not 
converge with these estimates after 10 iterations. 
 For the test case presented it is also considered 

cmLL 221 == , 1.01 =ρ , 032 == ρρ , 9.04 =ρ , 

0.11 =f  and 02 =f , which represents a difficult test 
case. 
 
Table 1 – Estimates obtained with LM (10 iterations). 

Noisy data (8%) 
 
Iteration 

1s
σ  

1−cm  

1ak  
1−cm  

2sσ  
1−cm  

2ak  
1−cm  

Obj. 
Func. 

[Eq.(13)] 
0 0.10 0.8 0.10 0.8 7.439 
5 0.52 0.049 2.1E09 0.01 6.86E-01 

10 0.45 0.05 5.5E07 3.7E07 1.216 
 
 In Table 2 are shown the results for the same test 
case using ANNs, and in Tables 3 and 4 are presented 
the results obtained when the ANN is used to generate 
the initial guess for the LM method. Here we used 
noisy data (maximum 8%), i.e., σ = 0.002 in Eq. (5). 
The experimental data used for the solution of the 
inverse problem consisted of a set of 40 radiation 
intensities measured at different polar angles, 20 
intensities measured by external detectors and 20 
intensities measured by internal detectors located at the 
interface between the two-layers, i.e. 1Lx = . 



Therefore, there are N = 40 entries in the input layer of 
the ANN. For the hidden layer we considered NH = N 
= 40. We used 500 patterns (NP) and a decreasing 
number of epochs (NE) in order to save computational 
time. 
 In this work the Neural Network Toolbox of the 
software MATLAB (Mathworks, Inc.) was used with 
the following neuron model in the backpropagation 
network: 40 elements in the input vector, log-sigmoid 
(logsig) transfer function between the input layer and 
the hidden layer (with 40 elements) and a linear 
transfer function (purelin) in the output layer (with 4 
elements in the output vector). 
 

Table 2 – Neural Network solutions for the inverse 
problem and CPU time considering different number of 

epochs (NH = 40, NP = 500) and noisy data (8%) 
 

Estimates (ANN) 

NE 
CPU 

time(min) 1s
σ  

1−cm  
1ak  

1−cm  
2sσ  
1−cm  

2ak  
1−cm  

500 120 0.40 0.01 0.43 0.01 
200 48 0.34 0.01 0.33 0.01 
100 22 0.35 0.09 0.32 0.09 
30 7,5 0.50 0.10 0.60 0.05 

 
 It can be observed from Table 2 that the ANN did 
not provide good estimates for the unknowns. An 
improvement can be obtained, but at the expense of a 
higher CPU time requirement. A different strategy is 
then adopted with a hybridization ANN-LM. 
 In Table 3 are presented the results obtained with a 
hybridization ANN-LM in which the former method 
provides an initial guess for the latter. The solution of 
the ANN were obtained considering 100 epochs in the 
training stage of the ANN. Now the results of the 
inverse problem are much better. 
 

Table 3 - Using ANN to obtain estimates for the LM 
with noisy data and number of epochs NE = 100 

 
Noise ANN estimates Results (LM) 

 
1s

σ  
1−cm  

1ak  
1−cm  

2sσ  
1−cm  

2ak  
1−cm  

1s
σ  

1−cm  
1ak  
1−cm  

2sσ  
1−cm  

2ak  
1−cm  

8% 0.35 0.09 0.32 0.09 0.447 0.050 0.455 0.050 
4% 0.40 0.03 0.45 0.04 0.450 0.050 0.445 0.049 
2% 0.39 0.04 0.42 0.05 0.450 0.049 0.449 0.050 
0% 0.37 0.04 0.40 0.05 0.45 0.05 0.45 0.05 

 
 

In Table 4 are shown the results obtained using 
also the hybridization ANN-LM, but now with only 30 
epochs in the training stage of the ANN. It can also be 
observed that very good results are obtained for the 
inverse problem. 
 

 
Table 4 - Using ANN to obtain estimates for the LM 

with noisy data and number of epochs NE = 30 
 

Noise ANN estimates Results (LM) 

 
1s

σ  
1−cm  

1ak  
1−cm  

2sσ  
1−cm  

2ak  
1−cm  

1s
σ  

1−cm  
1ak  

1−cm  
2sσ  
1−cm  

2ak  
1−cm  

8% 0.50 0.10 0.60 0.05 0.447 0.050 0.455 0.050 
4% 0.49 0.01 0.47 0.01 0.450 0.050 0.445 0.049 
2% 0.54 0.03 0.53 0.04 0.449 0.050 0.449 0.050 

0% 0.51 0.02 0.49 0.04 0.45 0.05 0.05 0.45 

 
 

It must be stressed that the solution of the inverse 
problem with either the LM or ANN methods using 
only external detectors led to non-unique solutions of 
the inverse radiative transfer problem. 

 

7. CONCLUSIONS  

 
A hybridization ANN-LM was successfully 

implemented for the estimation of the absorption and 
scattering coefficients in two-layer participating media 
even in the presence of noisy data. A test case 
demonstrates that the ANN may provide good initial 
estimates for the LM. 

Internal detectors, which were located at the 
interface between the two layers, were necessary in 
order to yield unique solutions for the inverse problem.     
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