Memetic Algorithms in the Solution of Inverse Heat Conduction Problems

> S. Suram K. M. Bryden D. A. Ashlock

Memetic Algorithms

- Combination of two types of algorithms
 - Population based global search
 - Local search
- Have been used to solve optimization problems
- Optimization of real values functions is relatively slow using EA
- Perform quicker local search using a hillclimbing algorithm

Memetic Algorithm

- Evolutionary algorithm for global search
- Nelder-Mead simplex method for local search
- Advantages of simplex methods
 - No computation of derivatives
 - Faster than an evolutionary algorithm on real numbers

Nelder-Mead Simplex Method

- Direct search method
 - Does not need derivative information
- Simplex is a polyhedron consisting of n+1 points (n-dimensions)
 - Triangle in a 2 dimensional plane
 - One of the points is taken as the origin
 - Vectors are constructed using other points
 - *Reflection, Expansion, Shrinking* are performed on the simplex to move towards the optimal solution

Nelder-Mead Simplex Method

- Example in two dimensions (minimization)
 - Three points
 - Find the Best (B),Good (G) and Worst (W) points
 - *Reflect* triangle about side BG

Nelder-Mead Simplex Method

- If R < W => correct direction, apply *Expansion*
- If R > W, apply
 Shrinking transformation
- Additional checks for R = W

Memetic algorithm

• Overview of algorithm

Step 1: Start evolutionary algorithm by initializing random solutions
Step 2: Evaluate candidate solutions (mating events)
Step 3: If number of mating events (N_m) is a certain number, send best member to NM algorithm
Step 3(a): NM algorithm explores the local search space to find best possible solution.
Step 3(b): Store solution from NM method.
Step 4: Continue to Step 2, until convergence of evolutionary process

Test Functions

Test Function 1

$$f = 100(x^2 - y)^2 + (x - 1)^2$$

Evolutionary	Memetic
Algorithm	Algorithm
783	350

Test Functions

Test Function 2

 $f = (y - (5/(4\Pi^2))x^2 + (5/\Pi)x - 6)^2 + 10(1 - (1/8\Pi))\cos(x) + 10$

• 3 global maxima

Evolutionary	Memetic		
Algorithm	Algorithm		
954	412		

 $(y-0.126 x^2+1.59 x-6)^2 + 10 (1-(0.039 cos(x))) + 10$

Evolutionary Algorithm

Chromosome

q_0	\mathbf{q}_1	q ₂	q ₃		q _{n-3}	q _{n-2}	q _{n-1}

- Mutation
 - Perturb value at a random location
- Crossover
 - Two point crossover

Inverse Heat Conduction Problem

 Estimating transient heat flux from temperature response

• Fitness function

$$f = \sum_{j=0}^{j=t_f} (T_j^{cand} - T_j^{spec})^2 + \lambda \sum_{j=0}^{j=t_f} (q_{i+1}^{spec} - q_i^{spec})^2$$

Converted to a maximization problem using

$$f_{\max} = \frac{1}{(f + 10^{-2})}$$

Solution from memetic algorithm

Backward Heat Conduction Problem

- Test case 1
- Estimation of initial temperature
- Test problem
 - Same as previous IHCP
 - Initial condition

$$g(x) = \cos(\frac{\pi \cdot x}{2})$$

 Solved as an optimization problem using the memetic algorithm

Backward Heat Conduction Problem

Backward Heat Conduction Problem

• Test case 2

- Discontinuous initial temperature profile

Time to Solution

EA	MA
2050	720
1845	375
2262	719

• IHCP

- BHCP 1
- BHCP 2

Conclusions and Future Work

- Savings in run time using the memetic algorithm
- Increased accuracy of solutions
- Tested with several multi-modal functions
- Apply the memetic algorithm to other inverse problems