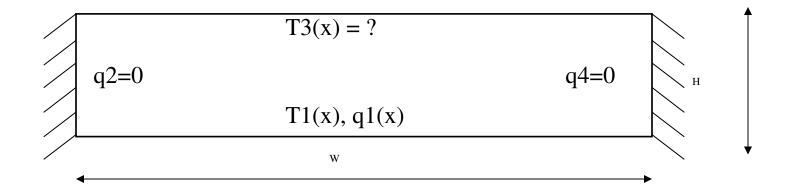
IDENTIFYING QUANTITATIVE TRAIT LOCI USING SENSITIVITY ANALYSIS

Sunil Suram Kenneth M. Bryden Daniel A. Ashlock

Inverse Problem



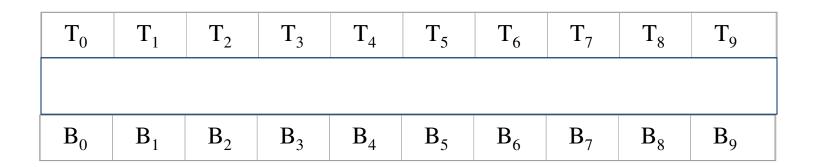
Low aspect ratio (H/W = 0.1) enclosure has been used.

Governing Equation of Radiative Heat Transfer

$$\frac{q(\mathbf{r})}{\varepsilon} - \int_{A} (\frac{1}{\varepsilon} - 1)q(\mathbf{r}')dF_{dA-dA'} = E_b(\mathbf{r}) - \int_{A} E_b(\mathbf{r}')dF_{dA-dA'}$$

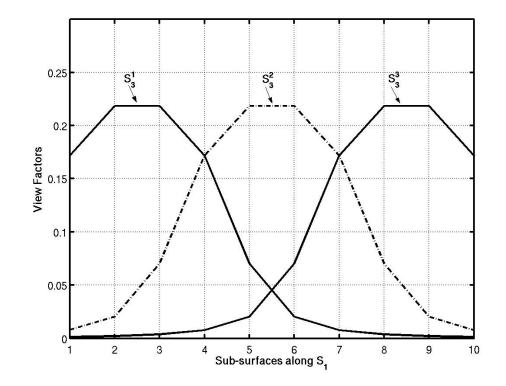
- In the absence of participating medium
- No external irradiation
- Fredholm integral equation of 2nd kind if
 - Emissive powers/temperatures are known
 - Heat flux to be calculated

View Factors



- Function of distance and geometry between any two elements and determine the amount of energy transfer between the surfaces.
- Remain the same irrespective of boundary conditions

Variation of View Factors

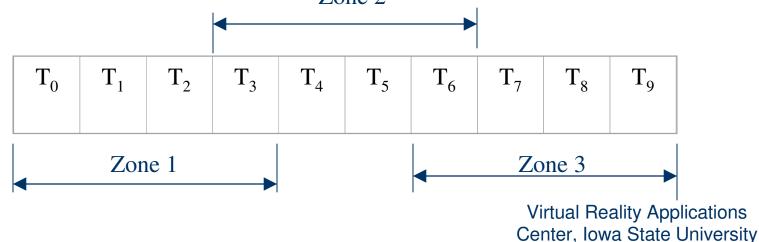


Quantitative Trait Loci

- Concept from genetics
- Genetic map on a chromosome that is associated with a specific trait of the creature
- The quantitative trait is the required temperature profile
- Chromosomes have been evolved in blocks that do not have much dependence on each other
- Dependence between the blocks is determined from view factors

Chromosome Division

- QTL's are used to combine portions of two chromosomes
- String of length 10
- Divided into 3 overlapping zones
- Fitness for each zone is calculated separately



Fitness Functions

$$(SSE)_{j} = \sum_{i=1}^{N_{z}} (q_{1i}(x) - q_{1i}^{*}(x))^{2}$$

- Sum of Squared Error (SSE) flux due to candidate solution and required heat flux
- 1st order Tikhonov regularization

Fitness Functions

- For each chromosome 3 fitness functions are evaluated, based on how closely the temperatures in these zones match the required heat fluxes *f1*, *f2*, *f3*
- Each of these are minimized

Crossover Operator

- Parent is compared with co-parent in each of the three zones (based on fitness functions)
- Crossover sites are restricted to the beginning and end of the zones

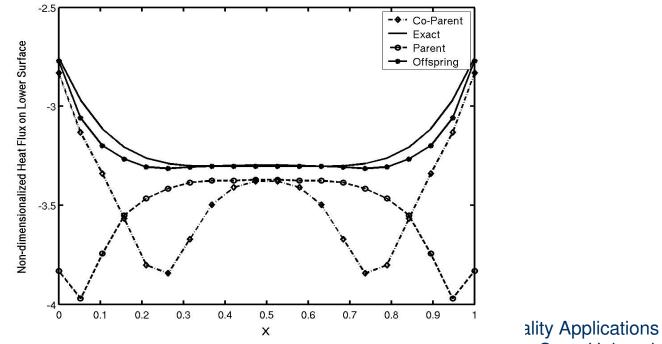
Crossover Operator

- In each zone the parent is either better (B) or worse (W) than the co-parent
- Eight cases of comparisons

Case	f_{I}	f_2	f_3
1	В	В	В
2	В	В	W
3	В	W	W
4	W	W	W
5	W	W	В
6	W	В	В
7	W	В	W
8	В	W	B

Comparison of Heat fluxes

Comparison of heat fluxes generated by parent, co-parent and off spring

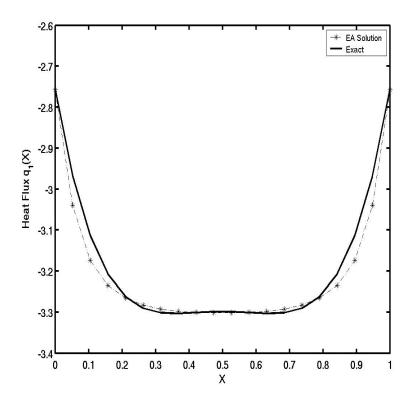


Center, Iowa State University

- The parent and co-parent would not have been awarded very high fitness values based on a single fitness evaluation
- Performing a planned crossover based on multiple fitness values, a better result is obtained

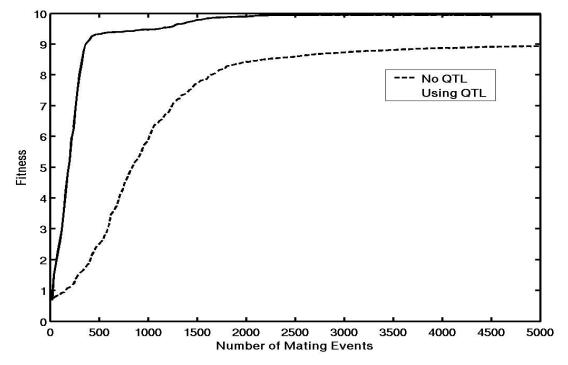
Results

• Heat Flux from EA runs



Comparison of fitness values

• Significant increase in fitness

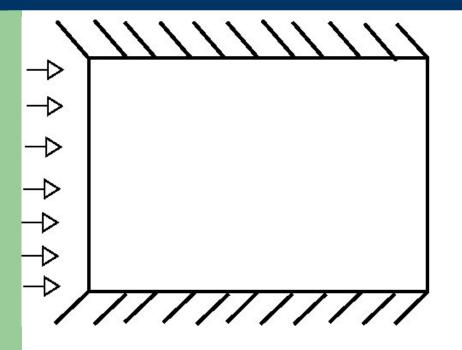


QTL

- Divide an optimization problem into smaller problems
- Makes the search process easier

- A single fitness was calculated for the whole string (QTL case)
- EA finds it easier to resolve stings of shorter length

Extending the Concept to Conduction Problems



- Linear heat conduction problem
- Identify QTL's

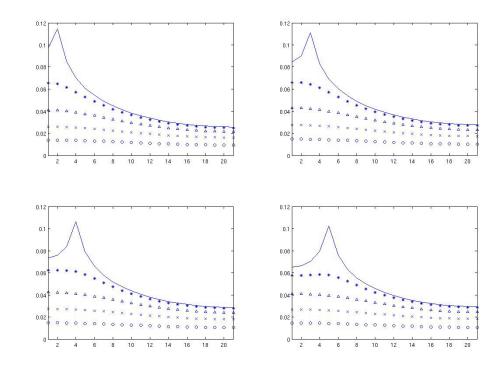
Sensitivity Coefficients

• Compute $\frac{\partial T}{\partial q}$ at grid points

• Changed heat flux value at grid point

- computed new temperature distribution

Sensitivity Coefficients



Conclusions

- Multiple fitness evaluations for a single chromosome increases the speed of convergence to solution
- This method can be used in problems where the domain knowledge of the problem can be used to identify QTL's
- To solve inverse problem on the 2-D conduction case discussed