Genetic algorithm solution of the IHCP using parallel computing and commercial CHT software

> Keith A. Woodbury Suprasanna Duvvuri Mechanical Engineering Department

THE UNIVERSITY OF ALABAMA ENGINEERING

Outline

- Motivation Machining application
- Genetic Algorithms
- Parallel Computing
- Test problem 1D IHCP
- Results
- Conclusions

THE UNIVERSITY OF ALABAMA ENGINEERING July 26-27, 2006

14th IPES, Ames, IA

Motivation

ALABAMA July 26-27, 2006

14th IPES, Ames, IA

Tool Geometry

THE UNIVERSITY OF ALABAMA ENGINEERING July 26-27, 2006

14th IPES, Ames, IA

Δ

Inverse Problem

Approach

- Use genetic algorithms to solve the optimization problem
- Use commercial software (FLUENT) to solve forward heat conduction problem
- Parallelize The genetic algorithm code to reduce the computational time

14th IPES, Ames, IA

Genetic Algorithms

Based on mechanics of natural selection and natural genetics

- 1) Selection Individual strings are chosen according to their fitness values
- Reproduction selected strings mated at random to produce strings with better fitness
- 3) Mutation this introduces information into the solution that was not present in the initial population

14th IPES, Ames, IA

7

UNIVERSITY OF

AKAMA

July 26-27, 2006

Genetic Algorithms

- <u>Coded parameters</u> (contrast with evolutionary algorithms)
- Fundamental Theorem of Genetic Algorithms: short, low-order, above average schemata receive exponentially increasing trials in subsequent generations
- Implicit parallelism: when n structures are processed in each generation, a genetic algorithm processes n³ schemata (building blocks)

Genetic Algorithm

- Maximizes, not minimizes
- Fitness function

14th IPES, Ames, IA

Genetic Algorithm

- We adapted Goldberg's "SGA" algorithm
 - Standard implementation
 - Many configurable options

14th IPES, Ames, IA

FLUENT simulations

Contours of Static Temperature (k) (Time=4.3000e+01)

Dec 07, 2005 FLUENT 6.2 (3d, segregated, lam, unsteady)

11

ALABAMA July 26-27, 2006

ENGINEERING

Parallel Computing

- "Embarrassingly" Parallel
 - Each processor runs a single, independent FLUENT simulation
 - Speedup time scales directly with number of processors

14th IPES, Ames, IA

Parallel Computing

Platform

- Mechanical Engineering Department
- 8 node (16 CPU) Dell PowerEdge HPC
- EMT64 (Xeon) processors @ 3.20 GHz
- Theoretical throughput 102.4 Gigaflops

Parallel Computing

Test Problem

- Want to learn the best combination of many parameters to obtain a good solution on the tool 3D IHCP
- Study a simple well-known 1D IHCP

14th IPES, Ames, IA

Test Problem

FIGURE 5.3 Triangular heat flux for test case. Finite insulated plate.

UNIVERSITY OF

July 26-27, 2006

14th IPES, Ames, IA

Of course.....

 Want the best solution in the shortest number of generations

THE UNIVERSITY OF ALABAMA ENGINEERING July 26-27, 2006

14th IPES, Ames, IA

Baseline Configuration

- N_{gen} = 100
- N_{pop} = 24
- N_{bits} = 8 (resolution 0.008)
- 10% mutation
- Bitwise mutation
- Roulette Wheel Selection

Baseline case - results case G100P24N8

Baseline case - convergence Case G100P24N8

Basic idea to select parameters

- Turn one knob at a time
- Run GA three times for each
- Compare results (fitness function)
- Look at convergence histories

Cases considered

name	gen	рор	nbits	mtype
convP36N11.xls	100	36	11	bit inversion
convP36N8.xls	100	36	8	bit inversion
convP36N5.xls	100	36	5	bit inversion
convP24N11.xls	100	24	11	bit inversion
convP24N8-sr.xls	100	24	8	bit inversion
convP24N8-mutate.xls	100	24	8	bit inversion
convP24N8-mutrand.xls	100	24	8	bit randomization
convP24N8-mutrand1.xls	100	24	8	bit randomization
convP24N8-mutrand2.xls	100	24	8	bit randomization
convP24N8.xls	100	24	8	bit inversion
convP24N5.xls	100	24	5	bit inversion
convG200P24N8.xls	200	24	8	bit inversion
convG100P24N8-ts.xls	100	24	8	bit inversion
convG100P24N8-scale.xls	100	24	8	bit inversion

m%	select	scaling
10%	roulette wheel	none
10%	stochastic remainder	none
25%	stochastic remainder	none
10%	stochastic remainder	none
25%	stochastic remainder	none
1%	stochastic remainder	none
10%	roulette wheel	none
10%	roulette wheel	none
10%	roulette wheel	none
10%	tournament	none
10%	roulette wheel	linear

THE UNIVERSITY OF ALABAMA JU

July 26-27, 2006

14th IPES, Ames, IA

Convergence - Bit Randomization

Case G100P24N8-mr10%

Observations

- SGA has been used to obtain solutions to an IHCP using a commercial solver in a parallel computer
- Stochastic remainder for selection and bitwise randomization for mutation appear to yield better solutions
- GA solutions are qualitatively good but not excellent

July 26-27, 2006

ENGINEERING

14th IPES, Ames, IA