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Motivation



July 26-27, 2006 14th IPES, Ames, IA 4

Tool Geometry
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Inverse Problem
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Approach

• Use genetic algorithms to solve the 
optimization problem

• Use commercial software (FLUENT) to 
solve forward heat conduction problem

• Parallelize The genetic algorithm code 
to reduce the computational time
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Genetic Algorithms

Based on mechanics of natural selection and

natural genetics

1) Selection - Individual strings are chosen 
according to their fitness values

2) Reproduction – selected strings mated at 
random to produce strings with better 
fitness

3) Mutation – this introduces information into 
the solution that was not present in the 
initial population
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Genetic Algorithms

• Coded parameters (contrast with evolutionary 
algorithms)

• Fundamental Theorem of Genetic Algorithms: 
short, low-order, above average schemata 
receive exponentially increasing trials in 
subsequent generations

• Implicit parallelism: when n structures are 
processed in each generation, a genetic 
algorithm processes n3 schemata (building 
blocks)
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Genetic Algorithm

• Maximizes, not minimizes
• Fitness function
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Genetic Algorithm

• We adapted Goldberg’s “SGA”
algorithm 
– Standard implementation
–Many configurable options 
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FLUENT simulations
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Parallel Computing

• “Embarrassingly” Parallel 
– Each processor runs a single, 
independent FLUENT simulation

– Speedup time scales directly with 
number of processors
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Parallel Computing

• Platform
–Mechanical Engineering Department
– 8 node (16 CPU) Dell PowerEdge HPC
– EMT64 (Xeon) processors @ 3.20 GHz
– Theoretical throughput 102.4 Gigaflops
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Parallel Computing

GA Code
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Test Problem

• Want to learn the best combination 
of many parameters to obtain a good 
solution on the tool 3D IHCP

• Study a simple well-known 1D IHCP 
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Test Problem
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Function Parameterization

Times are known
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GA “Machine”
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Of course…..

• Want the best solution in the 
shortest number of generations
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Baseline Configuration

• Ngen = 100

• Npop = 24

• Nbits = 8   (resolution 0.008)

• 10% mutation
• Bitwise mutation
• Roulette Wheel Selection



July 26-27, 2006 14th IPES, Ames, IA 21

Baseline case – results
case G100P24N8
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Baseline case - convergence
Case G100P24N8
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Basic idea to select parameters

• Turn one knob at a time
• Run GA three times for each
• Compare results (fitness function)
• Look at convergence histories
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Cases considered

linearroulette wheel10%bit inversion824100convG100P24N8-scale.xls

nonetournament10%bit inversion824100convG100P24N8-ts.xls

noneroulette wheel10%bit inversion824200convG200P24N8.xls

noneroulette wheel10%bit inversion524100convP24N5.xls

noneroulette wheel10%bit inversion824100convP24N8.xls

nonestochastic remainder1%bit randomization824100convP24N8-mutrand2.xls

nonestochastic remainder25%bit randomization824100convP24N8-mutrand1.xls

nonestochastic remainder10%bit randomization824100convP24N8-mutrand.xls

nonestochastic remainder25%bit inversion824100convP24N8-mutate.xls

nonestochastic remainder10%bit inversion824100convP24N8-sr.xls

noneroulette wheel10%bit inversion1124100convP24N11.xls

noneroulette wheel10%bit inversion536100convP36N5.xls

noneroulette wheel10%bit inversion836100convP36N8.xls

noneroulette wheel10%bit inversion1136100convP36N11.xls

scalingselectm%mtypenbitspopgenname
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Cases – average fitness
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Convergence – Bit Randomization
Case G100P24N8-mr10%
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Observations

• SGA has been used to obtain solutions to 
an IHCP using a commercial solver in a 
parallel computer

• Stochastic remainder for selection and 
bitwise randomization for mutation appear 
to yield better solutions

• GA solutions are qualitatively good but not 
excellent
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Observations


