# **Modal Decomposition Applied to Heat Conduction**



B. F. Feeny\*, F. de Monte\*\*, J. V. Beck\*, N. T. Wright\*

\*Department of Mechanical Engineering, Michigan State University \*\*Department of Mechanical Engineering, University of L'Aquila, Italy



#### **Premise**

Heat conduction problem has approximate discrete model

$$\underline{A}\dot{y} = \underline{B}y$$

where  $\underline{y}$  is a vector of measurable temperatures. Expect characteristic solutions of the form (similar to separation of variables in a continuous heat conduction problem)

$$\underline{y}_i(t) = c_i e^{-\lambda_i t} \underline{u}_i$$

 $\lambda_{\iota}$  = decay rate,  $u_{i}$  = mode shape

#### Goal

Estimate characteristic parameters  $\boldsymbol{\lambda}_{t}$  and mode shapes  $\underline{\boldsymbol{u}}_{i}$  of heat conduction from sampled temperature time-history data, means removed.



#### Simulation Example: "Hot Rod"

Heated rod, suddenly applied temperature T<sub>0</sub> at left end, insulated at right end. Type X12B10T0 [2].



# Modal Decomposition [1]

Ensemble matrices

 $\underline{Y}$  has columns  $\underline{y}(j\Delta t)$  j = 1,..., n

 $\underline{V}$  has columns  $\dot{y}(j\Delta t)$  j=1,...,n

 $\underline{R} = \underline{Y}\underline{Y}^T / n$   $\underline{N} = \underline{Y}\underline{V}^T / n$ 

Eigenvalue problem (matrix form)

 $\underline{R}\underline{\Psi}\underline{\Lambda} = \underline{N}\underline{\Psi}$ 

Modal matrix  $U = \Psi^{-T}$ 

**Modal vectors**  $\underline{u}_i$  are columns of  $\underline{U}$ Modal parameters are eigenvalues  $\Lambda$ 

## **Temperature Snapshots**





### Estimated Decay Parameters λ<sub>i</sub>



### **Extracted Exponentials**



# Acknowledgement

This material is related to work supported by the National Science Foundation under Grant No. CMMI-0727838. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.



#### **Estimated Mode Shapes**

true modes, o estimated modes



# **Summary and Conclusion**

- •Heat conduction problems have characteristic modes and decay rates
- •A state-variable modal decomposition method has been adopted to extract the modal
- information from time-history temperature data •The method was tested on a simulated heated
- •With no noise, the method works very well.
- •With added noise, the slowest modes are
- •Future work can address coping with noise and applying to experiments

#### References

- 1. Feeny, B. F., and Faroog, U., 2008. "A nonsymmetric state-variable decomposition for modal analysis," Journal of Sound and Vibration, 310 (4-5), pp. 792-800.
- 2. Beck, J. V., Cole, K. D., Haji-Sheikh, A., and Litkouhi, B., 1992, Heat Conduction Using Greens Functions, Hemisphere Press, Washington.