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Complex Modal Estimation of Wave Parameters in
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Premise
Traveling waves can be expressed in terms of
complex modes of vibration
Example, traveling wave y(x,t):
y(x,1) =2Asin(yx — wt) = A[coswr sin yx — sinwt cos yx|
or y(x,0)= %(z(x,t)Jr Z(x,t)
where z(x,r) = Ae""¢(x) is the complex modal
motion, and

@(x) =sinyx +icosyx

is the complex mode shape.

Complex modes can be extracted from sampled
time-history data of wave behavior.

Simulation Example 1
Two-harmonic dispersive wave
y(x,1) = Ajsin(y,x — 1) + A, sin(y,x — w,1)

where 4 | A,=12 mm

7,=20 y,=16 rad/m

According to equation (1)
w, =5824694 w, =372.7804
€,=29.1235 ¢, =23.2988

rad/sec
m/sec

According to equation (2), group velocity
¢, =524222  m/sec

Added noise, uniformly distributed 2 times y, .

Estimated parameters

¥, =20.0000 7, =16.0021  rad/m

,, =584.9966 w,, =3755177 rad/sec
¢, =29.2498 ¢, =234668 m/sec
c,, =52.3803 m/sec

Waveform and extracted COVs
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One-Dimensional Media

Goals

*Characterize modes in traveling dispersive waves
*Exhibit the energy distribution among the modes

*Use decomposed modes to estimate modal frequencies,
wave numbers, and phase velocities

*Estimate the group velocity spectrum
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Example System: Euler-Bernoulli Beam
Undamped, infinite, thin rectangular steel beam
Young’s modulus E = 200e9 N/m2

widthb=1cm

heighth=1 mm

density p = 7860 kg/m?

1=bh%/12, A=bh

According to the theory of waves [2]

= ayz (1)
where w is the frequency, y is the wavenumber, and

EI
a= |22
PA
Phase velocity c=w/y

Group velocity ¢, = ‘Z—w
v

Complex Modal Decomposition [1]
*Measure y(x;.t;) Jj=L..,m;k=1,...,n
*Convert to complex analytic signals z, = z(x .t;)
*Build complex ensemble matrix Z such that

Z has elements 7 (rows are sensor histories)

*Correlation Matrix

*Eigenvalue problem (matrix form)
RU=UA

*Modal matrix U

*Complex modal vectors u; are columns of U
called Complex Orthogonal Modes (COMs)
*Squared Modal amplitudes are eigenvalues A
called Complex Orthogonal Values (COVs)

*Complex modal coordinate sampled histories
are the rows of the complex modal ensemble

given by 0- sz
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Example 2: Disturbed Beam

Response to a Gaussian disturbance given by [2]

Y0) =2 fybys" (e 0 coslatx’s(r) - p(1)]
s(1) = o) =tan™ %L
b;

1
4(by +a’'t*)
Added noise, uniformly distributed +2-° times y,,._

Spatial and temporal sampling limitations
(sampling intervals and record lengths):

o =39270 7, =314.15  rad/m
., =224560 w,, =375.5177 rad/sec
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Summary and Conclusion

Modal responses

First mode: longer wavelength,
slower to travel off domain

b

Fourth mode: shorter wavelength,
quicker to travel off domain

Traveling waves can be described with complex modes

A complex modal decomposition can extract modal information
Modal extractions can be used to estimate wave parameters:
wavelength, frequency, phase velocity, group velocity, modal
energy

Decomposition is robust to noise
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